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Abstract

Traveling waves are conjectured to play a computational role in information trans-
fer within and across regions of the brain, however both their function and mor-
phology are still poorly understood - especially in the motor cortex. Linear waves
of local field potential (LFP) over beta oscillation range (15-30 Hz) are thought
to be associated with movement planning when sweeping across a microelectrode
array. However, it is not known whether more localized dynamics are present,
and whether the different parts of the primary motor cortex spanned by the array
contain different pieces of information about the upcoming movement. Previous
studies that analyzed linear waves in the brain suffered from two main statistical
weaknesses. First, they did not clarify the null hypothesis they were testing against
and second they did not control the overall error rates of their procedures. Our first
contribution is to develop a statistical procedure for detecting such waves. We
then analyze the local topography of traveling waves in intracortical microelec-
trode recordings of the primary motor cortex when a monkey is moving a cursor
to instructed directions. We do so by dividing the grid array into smaller square
grids or ”patches” and fitting a series of linear regression models to the phase
spatio-temporal series extracted from the LFP. Our results suggest that there is
indeed spatial heterogeneity across patches, both in terms of number of patterns
identified per patch and their directions of propagation. This finding are a first step
towards analyzing the morphology of waves in the primary cortex, and encourage
future studies to investigate the information content of its different parts.

1 Introduction

Travelling waves are spatio-temporal patterns that arise naturally in oscillating media. In neuro-
science, they are conjectured to play a computational role in information transfer within and across
regions of the brain [1, 2]. However, even though their presence has been repeatedly detected in the
visual [3], auditory [4], and motor cortices [2], as well as in subcortical structures [5], both their
function to behavior and their morphology are poorly understood, especially in the motor cortex
[6, 7].

Neuroscientifc methods for detecting and analyzing waves are currently under-developed compared
to other fields, such as oceanography and seismology, where traveling waves are also important
[8, 9, 10, 11]. Three main factors complicate their analysis in the brain: First, brain waves show
transient dynamics, more so than ocean waves for example, which raises the temporal and spatial
resolution requirements of recording tools and usually precludes the ability to conduct classical
frequency-domain analysis. Second, capturing the correct spatial range and/or resolution of the
wave of interet might be infeasible sometimes due to constraints in sensors placements, which in
turn might render its mode of propagation unidentifiable. For instance, while in the visual brain
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regions many types of waves have been observed (e.g. concentric [12], spiral wave [13], etc.), only
linear waves have been analyzed in the motor cortex, in part because the recorded areas were too
small to cover the global activity and reveal diverse wave patterns with the straightforward analysis
methods. Finally, the third challenge is the high level of intrinsic noise of the underlying brain
signals which makes it harder to identify the signal to analyze.

One analysis approach, common in neuroscience, is to track the temporal phase dynamics of
recorded trials [14, 15]. In particular, [2] demonstrated the presence of linear traveling waves in
the monkey primary motor cortex by tracking the degree of alignment of the phase gradients across
the recording electrodes. Similarly, [16] demonstrated the presence of linear traveling waves within
a stratum of the hippocampus by fitting a series of linear regression models to the phase spatio-
temporal series and tracking their goodness of fit measures. Although crucial for interpreting the
results, a complete statistical analysis was missing from both these studies. In [2] the authors chose
an arbitrarily threshold above which the gradients’ alignment is taken to be strong enough, and
similarly in [16] the authors report low p-values and a high R2 to indicate a sufficiently good fit.
However, these methods suffer from two main statistical weaknesses. First, the statistics used to
determine the presence of a wave are not absolute quantities and the strength of the patterns they
indicate cannot be judged in an absolute manner but only relative to a baseline. Formally, this is
equivalent to a hypothesis testing problem where the null hypothesis was unclear. The second weak-
ness of the analyses is that they didn’t account for the large number of hypothesis tests that are
conducted. In both cases, the presence of a wave was judged at every time point, and given the large
number of time points, multiple comparison statistical procedures should have been used to control
for the overall error rates.

In this work, we build on previous literature in two main ways. First, we improve the methodology
by designing a statistical procedure based on the permutation testing framework that selects the
time segments where linear phase patterns are statistically significant. As we show below, this task
is subtle and its success depends on, among other things, the number of electrodes chosen in the
analysis, the ”linear” nature of the phase data, and the cross-correlation strength between electrodes.
Second, we investigate the local morphology of the wave activity in the primary motor cortex by
re-analyzing the phase spatio-temporal series of local field potential (LFP) recordings from [2].
Specifically, we simplify the problem of determining the shape of the wave (e.g, concentric or spiral)
by only seeking to determine whether the wave activity is heterogeneous across the array. If it is,
then it would give an indication that the wave activity in the motor cortex is not limited to linear
waves and it would open the door to more investigations in that direction. We do so by dividing
the recording array into smaller non-overlapping square patches, and comparing the distributions of
estimated wave properties both across patches and across experimental conditions. This approach
allows us to analyze the LFP recordings beyond the limiting assumption that a single linear wave is
present at any time point while still using simple linear estimation methods of [2, 16].

In the rest of this document, we first introduce our dateset (section 2) and carefully revisit the phase
processing pipeline which consists of the extraction and unwrapping of the phase (section 3.1).
We then analyze the travelling waves by fitting a series of linear regression models to the phase
spatio-temporal series and provide a comparison with the original method used for this dataset [2]
(section 3.2). Finally, we describe the statistical procedure used to detect the time segments with
statistically significant linear wave patterns (section 5). In our results section (section 6) we show
how the distribution of the test statistics under the null hypothesis can guide us to determine the patch
size, and the method that balance the locality of the analysis with its power to detect meaningful
patterns. Our results demonstrate that the wave activity across the array is heterogeneous and that it
is generally consistent in every patch across experimental conditions.

2 Dataset description

Intracortical microelectrode measurements, organized in a 10 × 10 square array with 400 µm inter-
electrode spacing, were recorded from the arm area of a monkey’s primary motor cortex while he
was performing an instructed-delay center-out task. This task consisted of three periods, referred to
as the hold, instruction and movement periods. During the hold period, the monkey was trained to
hold the cursor on a center target and wait 500 ms for the instruction cue. During the instruction
period, the monkey was presented with one of eight evenly spaced peripheral targets and continued to
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hold at the center for an additional 1000-1500 ms. At that time, the go cue was presented, signaling
the monkey to begin movement to the peripheral target. The end of movement is also timestamped
and corresponds to the time when the monkey reached the target. For the rest of the document
we will refer to the set of successful trials with different target movement directions as different
experimental conditions. Trials where the monkey did not successfully reach for the correct target
direction were ignored.

The LFP recordings consist of 96 channels sampled at 1KHz. There are around 50 independent trials
per experimental condition of around 2 seconds each. Fig. 1 shows the spectrogram averaged over
all trials and all electrodes, centered around the instruction cue (time 0). Individual spectrograms
(i.e, for each trial-electrode) are computed using the multitaper method with time-bandwidth product
equal to 2 and with 3 tapers. Notice the peak in power between 10 and 25 Hz just after the instruction
cue. This increase has been reported consistently in studies of the primary motor cortex and is
associated with the arrival of upcoming movement information. While previous studies have mainly
focused on this period, in this work we analyze the segments centered around the instruction cue,
with 500 ms of data prior to it and 1000 ms after it. We chose this larger time span in order to
investigate more globally the distribution of waves onset.
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Figure 1: The spectrogram averaged over all trials and channels of the lfp dataset. Note the peak
in power in the 10-25 Hz frequency band, in particular right after time 0, after the instruction cue
onset.

2.1 Wave activity

[2] showed that the increase in beta power was temporarily associated with linear waves, character-
ized by phases that were organized linearly across the array.

Fundamentally, a wave is an orchestrated oscillatory activity that travels through a medium from one
location to another. It is characterized by three quantities: Its amplitude defined by the distance from
rest to crest, its wavenumber k defined to be the number of cycles per space unit (or equivalently
wavelength λ = 2π

k ), and its frequency f defined to be the number of cycles per time unit (or
equivalently period T = 1

f ). Additionally, its speed can be derived as λ
T = ω

k and is defined as the
distance traveled by a given point on the wave (such as crest) per time unit.

A 2-dimensional surface representing a single linear traveling wave can be modeled by:

v(x, y, t) = V (kxx+ kyy + ωt+ φ0), (1)

where (x, y) is the coordinate vector, t is the time index, ~k = (kx, ky) is the wavenumber vector
and φ0 is the phase offset. Therefore to fully characterize the dynamics of a linear wave it suffices
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to determine its wavenumber vector and its angular frequency. In Fig. 2 (top row) we illustrate a
simulated linear wave. A complete cycle of the wave can be seen spanning the whole array and its
peak (red part) can be seen moving as time passes from t1 to t5. The second row of the figure shows
the phase of the wave. It is organized as a plane over the array and its slope remains constant over
time. The third row of Fig. 2 is a compass plot of the directions in which the phase gradients at
the different electrodes are pointing. For this perfect linear wave, they all coincide at 210 degrees
and remain constant across time. The slope of the plane is the wave’s wavenumber and in section
3.2 we show how to estimate this quantity using either linear regression or using the average spatial
gradient across the array.

In this work we assume that linear waves are a reasonable approximation to segments of activity
in our data, allbeit corrupted with noise and transient. The previous analysis in [2] estimated the
average wavelength of waves oscillating at around 20 Hz to be approximately 10 mm, which is
equivalent to an approximate speed of 0.2 mm/ms. This means that the wavelength is around twice
the width of the array, and only half of the wave cycle can be seen in a single snapshot.
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Figure 2: Simulated linear wave. Top panel: shows 5 time snapshots of the simulated voltage on a
10× 10 array, Middle panel: shows the associated absolute phase which is organized as a plane of
constant slope, Bottom panel: show the directions of the phase gradient vectors of all electrodes.
All of them coincinde at around 210 degrees.

3 Background Methods

As described in section 2, linear wave dynamics are summarized by the wave’s wavenumber vector ~k
and its temporal frequency ω. Below, we describe how to estimate these quantities using 2 methods:
by fitting linear regression models to the phase data as in [16, 17] or by numerically computing
the average spatial phase gradient as in [2]. In this section, we first describe the phase processing
required to extract the phase and make it adequate for use in estimating the wave properties using
the above mentioned methods. We then describe our statistical procedure that allow to select the
statistically significant linear wave segments in our dataset.

3.1 Phase extraction and processing

3.1.1 Phase extraction

Let v(x, y, t) denote the LFP signal, where (x, y) denote the position of the electrode on the 2-
dimensional recording grid and t denotes the discrete time index.
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Given the property of real-valued signals that their negative frequency Fourier coefficients are equiv-
alent to their positive frequency counterparts, any real-valued signal, such as v(x, y, t), can be alter-
natively represented in its analytical signal form which consists of eliminating its negative frequency
components. This alternative representation makes the extraction of the instantaneous amplitude and
phase straightforward.

The analytical is commonly computed by using the Hilbert transform:

va(x, y, t) = v(x, y, t) + iv̂(x, y, t) = a(x, y, t)eiφ̄(x,y,t), (2)
where v̂(x, y, t) is the Hilbert transform of v(x, y, t), a(x, y, t) is the instantaneous amplitude, and
φ̄(x, y, t) the instantaneous phase wrapped in [−π, π).

The use of the analytical signal assumes that the signal has a single frequency component at any
time point. As can be seen in Fig. 1, this is not the case for the LFP recordings which have high
power in the 10−45Hz band. In this work, we assume like in previous studies [7], that such ”single-
frequency” representation still captures important dynamics that are worth studying. Given that the
power has a strong peak in 15 − 25 Hz band, we filter the signal around 18 Hz with a bandwidth
of + 3 Hz, which strikes a reasonable balance between the accuracy of estimation and the ability
to capture the richness of the wave phenomenon. Indeed, we observed in our initial exploration
(not shown here) that with a narrower frequency band (e.g, + 1Hz), the timeseries of estimated
wave properties, in particular the direction of propagation timeseries, are less dynamic across time
and give a less interesting perspective over the wave activity. Fig 3 illustrates the amplitude-phase
decomposition of the signal of one trial. It is noticeable that the phase timeseries (i.e. bottom
panel) alternates between segments of synchronized activity across channels and segments of less
synchronization. This is related to the instantaneous amplitude, which indicates high synchrony and
typically constructive addition in the oscillations across electrodes when it is high (e.g. at 600ms)
and less synchrony when it is low (e.g. at -100ms relative to instruction cue).
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Figure 3: Analytical signals of all channels of one trial. Top panel: shows the voltage signal
v(x, y, t) filtered around 18 + 3 Hz. Middle panel shows the associated amplitude a(x, y, t) and the
Bottom panel shows the phase φ̄(x, y, t).

3.1.2 Phase Unwrapping

The wrapped phase φ̄ that we extract from the analytical signal varies between [−π, π). Let us define
the phase φ such that:

φ̄ =W(φ+ ε)

= mod(φ+ ε, 2π)− π (3)

where W is the wrapping operator and ε is random zero mean noise. Before being used as input
to the linear regression method or the PGD method (where the 2π jumps would be misleading), the

5



phase needs to be tranformed back to φ, which can be interpreted as a spatio-temporal delay. In other
words it needs to be unwrapped. Under the assumption that the sampling rate satisfies the Nyquist
criterion in all dimensions, the absolute phase difference between any 2 adjacent points (spatially
or temporally) should be no greater than π. Based on this principle, basic unwrapping procedures
consist of navingating through the data points in any spanning tree structure and whenever the differ-
ence between adjacent data points is observed to be larger than 2π, add or subtract 2π to the second
point [18]. When the timeseries is noisy, like in our phase timeseries, unwrapping becomes a hard
problem because the unwrapping algorithm might erroneously add or subtract 2π or fail to do so,
and the errors will propagate and corrupt the rest of the computation.

In this work, we implemented a quality guided unwrapping algorithm [19] which ensures that the
noisy regions are unwrapped last and consequently the errors will remain local. It first ranks the
points based on quality using a heuristic and then it unwraps the best parts of the data first and
leaves the noisy parts to the end in order to minimize the propagation of the error. This is an
appealing approach for our data because the noise is localized. Choosing the phase correlation
between adjacent points has been previously shown to work on this type of data [17]. Fig. 4, shows
the unwrapped phase of an example trial. Given that the signal is oscillating with an approximately
constant period, the phase at every electrode is changing at a constant rate which is manifest in the
slope of the unwrapped phase. As can be seen, the quality guided unwrapping helps containing the
noise such that it remains localized.
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Figure 4: The phase of all channels of one trial. Note: the y-axis coordinates are not displayed. Top
panel: shows the wrapped phase ∈ [−π, π), Bottom panel: shows the unwrapped phase using the
3D quality guided unwrapping algorithm.

3.2 Linear wave analysis

3.2.1 Linear Regression Method

In the phase domain, the linear wave equation is equivalent to a plane model:

φ(x, y, t) = kxx+ kyy + ωt+ φ0 (4)

which can be fit using linear regression [17]. As in [16], our results are based on regressing φ
on x and y as independent variables and we estimate ω(t) separately by averaging the temporal
derivatives across electrodes. In order to estimate the time-varying wave properties, we fit a series of
linear regression models in overlapping time windows. For example, to estimate the wave properties
at time t, we fit a model using data from t − twin to t + twin, such that the total window size is
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2× twin+1. The length of the time window is a parameter that we choose. In our initial exploration
we looked at 5ms, 15ms and 31ms windows which all gave similar results. Below we use windows
of 5ms.

We look at two diagnostic quantities associated with each fitted model: the p-value, which allows us
to assess the statistical significance of the full model against the null hypothesis that kx = ky = 0;
and R2, which allows us to assess its goodness of fit. In Fig. 5 we see a typical times series of
p-values of the fitted models of an example trial. Note that the log10(p-value) at all time points
are extremely small suggesting that the dependence on x and y is statistically significant at all time
points! This is due to the nature of the unwrapped phase in this problem which can be fit by a
statistically significant plane at most time windows. However, more criteria are needed to distinguish
a wave pattern from random linear pattern. The p-value alone is consequently clearly not adequate
to distinguish actual waves from non-waves in this dataset.
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Figure 5: Full model p-value timeseries of one trial estimated using a regression window of 5ms.
What we are looking for is not merely that the linear approximation of the phase data be statistically
significant. For a time segment to contain a wave, the linear pattern must also be strong across the
electrodes meaning that the variability in the phase should be to a high degree explained by the
variation in x and y. The R2 is a measure of such strength. Formally, let

R2 =
Ev
Tv
, (5)

whereEv =
∑
x,y(φ̂(x, y)− ¯̂

φ)2 is the variance explained by the linear fit, Tv =
∑
x,y(φ(x, y)− ¯̂

φ)2

is the total variance of the data, and ¯̂
φ is the mean phase over the observations. R2 lies in [0, 1] where

0 means that none of the variance is explained by the fit, and 1 means that all of it is explained by
the fit.

In this work, a ”sufficiently” high R2 is one of our criteria for defining a wave. In 5.1 we explain
the two additional criteria corresponding to a ”sufficiently” long duration and a ”sufficiently” stable
direction of propagation.

3.2.2 Phase Gradient Method

For the sake of comparison, we use the method developped to analyze this dataset in [2]. This
method is based on numerically computing the instantaneous spatial and temporal derivatives at
all electrodes. The average spatial phase gradient is then used to estimate the wavenumber vector.
As seen in Fig. 2, the phase gradients of a perfect linear wave all point in the same direction. So a
reasonable measure of the ”linearity” of a wave, is found in the Phase Gradient Directionality (PGD)
measure which computes an index of phase gradient alignment across the electrodes:

PGD(t) = ||∇φ||/||∇φ||, (6)

with PGD(t) ∈ [0, 1], where 1 indicates perfect alignment and 0 indicates no alignment at all.
[17] shows that this measure is similar results to the standard circular variance measure [20]. One
drawback of this method is that it is based on instantaneous spatial derivative computations which
exacerbate the noise.

Fig. 6 shows the estimation results from both R2 (blue lines) and PGD (red lines). In the top
panel an example R2 timeseries can be seen to fluctuate between 0.1 and 0.8 at different times. The
PGD estimates follow similar overall patterns but they are clearly noisier than R2. This remains the
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Figure 6: Wave estimates using regression (blue) and numerical derivatives (red) methods . Top
panel: shows the R2 and PGD timeseries, Middle panel: shows the direction of propagation
timeseries in degrees, Bottom panel: shows the speed timeseries in m/sec.

case even if we smooth the PGD timeseries with a moving average filter of the same width as the
regression window (not shown here). The middle panel shows the estimated directions of propaga-
tion. We can see that the 2 methods are relatively in agreement in less noisy segments, but again
the PGD method suffers more from the noise and results in more high frequency fluctuations. In
our initial exploration, we saw that direction estimates are quite stable as we vary parameters of the
processing pipeline (including unwrapping algorithms, and regression windows sizes). Finally the
bottom row shows the speed estimates. We can see that the regression estimates are systematically
higher than the PGD estimates, and it is unsurprising because the wavenumber estimated in regres-
sion is smoother. However, a surprising difference in the two timeseries is the presence of the big,
low frequency, peaks in the regression estimates but not in the PGD estimates. By looking at the
regression residuals we found that those are usually associated with some systematic curvature in
the phase data. For example, the phases at different times around 700 ms after the instruction cue
all have the shape of a parabola as a function of the x and y coordinates which leads to a plane fit
of very small slope k (and hence very high speed estimate computed as ω

k ). Note that the p-value
at this point is also high in Fig. 5, indicating less evidence for k different than 0. This behavior
might be a manifestation of the wave being reflected by some boundary and starting to propagate
in the opposite direction. Because the PGD only looks at instantaneous average estimates of the
wavenumber, this behavior is not captured. In both cases however, this window of time witnesses a
change in the direction of propagation of around 180 degrees. Although this difference is interesting
to investigate more thoroughly, note that these segments of time are associated with low R2 and
PGD values, and are therefore not of interest to us for the rest of the current analysis.

Now that we have timeseries of linear phase estimates, the question remains about which segments
contain waves. We report this discussion to section 5 where the wave definition includes high R2 or
PGD values and stable direction of propagation estimates. In the rest of the document we will refer
to R2 or PGD as the test statistic when making the distinction is not relevant.

4 Array partitioning

In the rest of the work, we will regard the microelectrode array as a set of non-overlapping square
patches. Specifically we have looked at patches of 3 × 3, of 4 × 4, and of 5 × 5 electrodes. The
smaller the patch size the more localized are the dynamics we identify, however, as we will see in
6, the lower is the signal-to-noise ratio and the harder it is to distinguish real ”wave segments” from
noise. The different partitionings of the array are shown in Fig. 7. Every small square in the grid
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represents an electrode, and the light brown parts delimit the patches. The blue parts are discarded
from the analysis. Not that the 4×4 patch size results in the most separated patches among the three
configurations.

Figure 7: The different patch configurations overlayed on the 10× 10 electrodes array. Left panel:
9 patches of size 3 × 3. They start at the top left electrode and partially cover the array. Middle
panel: 4 patches of size 4 × 4, cover the four corners of the array. Right panel: 4 patches of size
5× 5 cover the entire array.

5 Statistical Methods

Using the two methods above, we obtain a time series of test statistics and timeseries of direction
and speed of propagation for every trial, patch, and experimental condition. However, the methods
do not allow us to know which segments of the time series contain the statistically significant wave
patterns that we are looking for. In the absence of a priori knowledge of the possible locations
of these patterns, we have to conduct a hypothesis test at every time point, in every patch, trial and
experimental condition and assess whether the observed statistic in that sample lets us or not to reject
the null hypothesis (defined below) at some critical value α. This amounts to millions of tests and the
need to control the Type I error rate through a multiple comparison procedure becomes essential. A
Type I error is wrongly rejecting of the null hypothesis when it is actually true. Briefly, the challenge
induced by such a large number of comparisons is that even if at individual samples the probability
of wrongly rejecting the null is very small (0.05 for example), over the set of all comparisons we
then expect to wrongly reject the null a large number of times (at tens of thousands of samples) only
because of chance. Multiple comparison procedures are a means to control the Type I error rate
across the set of comparisons instead of at each comparison separately. A corrolated challenge is
then to control the Type II error rate, which consists of wrongly accepting the null. False Discovery
Rate (FDR) procedures with improved sensivity have been developped to address this issue.

Below, we first define what we mean by a wave pattern in this work. Then, we describe the null
hypothesis against which we compare our working hypothesis. Third we describe a permutation
procedure called, depending on the source, the ”suprathreshold cluster” test [21] or the ”excur-
sion” test [22] that lets us control for Type I error globally in every trial instead of at each time
point. Finally, we conclude the section with the introduction of the FDR and the presentation of the
Benjamini-Hoshberg procedure to control the type II error [23].

5.1 Wave segments definition

Our working hypothesis is that at least some trials contain segments of time that represent ”wave
patterns”. We define a wave pattern to be a time segment of ”sufficiently long” duration in which the
phases are linearly organized across the electrodes of interest, indicated by a ”sufficiently high” test
statistic, and where the direction of propagation is ”sufficiently stable”. In this work, we consider
a segment of at least 5ms duration to be sufficiently long and a cumulative sum of the absolute first
difference in the direction timeseries of up to 15◦ to be a sufficiently small variation in direction of
propagation. These values were chosen based on exploration and a discussion with a domain ex-
pert. The minimum time duration requirement is not essential, and is usually attained automatically
when enforcing the stability of direction requirement. By looking at the distribution of direction of
propagation at every time point of phase segments with strong linear patterns, we found that using
a 15◦ threshold to delimit wave segments resulted in representative mean directions. We chose the
test statistic threshold, called subsequently the primary threshold, above which the linear pattern is
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sufficiently strong, to be the 99th percentile of the distribution of the test statistic under the null hy-
pothesis. This means that using this threshold we retain the time points that have a 1 % probability
of occuring if the null hypothesis was true. Once we have these three parameters, we can identify
the segments of interest in our data (i.e. the segments that might contain waves), and we call them
”the observed clusters” in the rest of the document . We compute their global p-values based on
the excursion test and we select among them the ones that pass the FDR test procedure (described
below) and consider them to be wave segments.

5.2 The null hypothesis

We define the null hypothesis to be that the spatial organization of the electrodes that generated the
time series is completely random across all electrodes of the array. We simulate a draw from the null
distribution by randomly shuffling the electrodes and computing the times series of the statistics
of interest. Note that in this way we disrupt only the spatial organization across electrodes while
preserving their temporal pattern and the overall cross-correlation structure (which is not affected
by the order of the electrodes).

We compute the distribution of the test statistic under the null hypothesis for every experimental
condition separately using the following randomization procedure:

1. Randomly pick a trial out of the set of trials associated with this condition.

2. Shuffle the electrodes across the entire array and then divide them into patches.

3. Process the phase, and estimate the wave parameters separately for every patch.

Repeat the above steps N1perm times and in the end, the empirical distribution of the test statistic
under the null, Dnull, is represented by all the time points of all permutations and patches.

5.3 Excursion test procedure: Compute global p-values

The excursion test procedure allows us to control for the Type I error globally for an entire trial,
instead of a sample by sample manner. Its rationale is the following: the permutation procedure
described above computes a draw from the null distribution in an entire trial and so instead of looking
at the distribution of test statistic at every time point in that trial, we could look at an appropriate
maximal statistic that summarizes the entire trial. In that way, we reduce the multiple comparisons
to a single comparison per trial and we can therefore control for the Type I error rate per trial. This is
a weaker type of control than that provided by a sample-wise control, but it is the more appropriate
for our purposes of finding activity that spreads smoothly spatio-temporally.

The maximal statistic used in an excursion test is an aggregate ”cluster-level” statistic, where a
cluster is defined to be a segment of time which has successfuly passed the three criterias of our
wave definition (i.e. minimum R2, minimum duration, and maximum direction variation) In this
case we choose the aggregate cluster-level statistic to be the mean test statistic for that cluster, and
the maximal statistic is the maximum over all clusters.

We compute the permutation distribution of the maximal aggregate statistic for every experimental
condition separately using the following procedure:

1. Perform the randomization procedure described above and obtain Npatch statistic time-
series and their associated direction timeseries.

2. Select all the time points where the statistic is higher than the primary threshold.

3. Cluster the selected points based on time adjacency.

4. Segment the clusters such that the cumulative absolute first difference in the direction time-
series is less than a threshold Dthresh degrees.

5. Discard clusters with a duration less than 5 ms.

6. For every cluster compute its mean statistic.

7. Keep the maximum aggregate statistic over all the clusters per patch. If no clusters were
found, set the maximum aggregate statistic to zero.
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Repeat the above stepsN2perm times. In the end, the distribution of the maximum aggregate statistic
under the null will be represented by the Npatch×N2perm samples generated during this procedure.

As described earlier, we chose the primary threshold to be the 99th percentile ofDnull. The primary
threshold controls the power of the excursion test. The lower the threshold, the more clusters are
retained in the first phase and the bigger (or longer) the found clusters are. In this case localized
clusters are diluted by less intense adjacent activity. In contrast, if the primary threshold is high, the
tendency favors smaller but more intense clusters and diffuse clusters are potentially missed. In our
analysis we found that the requirement of directional stability played a bigger role in the duration of
the found segments than increasing the primary threshold (e.g. to the 99.9 percentile).

Finally, the excursion test defines the global p-value of an observed cluster to be the probability that
the maximal aggregate statistic under the null has a value more extreme than its observed aggregate
statistic.

5.4 False Discovery Rate: Identify wave segments

After performing all the steps above, we are left with a total of Nsegments of the order of several
thousands across all trials, patches, and experimental conditions, with their associated global p-
values. This is still a large number of tests and the need to control for both Type I and Type II
errors remains. Following [23], we choose to control the FDR criterion as opposed to controlling
the more stringent Family Wise Error Rate (FWER) criterion. While the latter criterion controls
the probability of making any Type I error and favors having a strong (sample-wise) control of the
false error rate at the expense of a tremendous decrease in sensitivity of the test the former controls
the expected number of errors favoring the sensitivity of the test at the price of a weaker control
of the false error rate (or a more global control). In some problems, such as ours, controlling the
FDR is more reasonable than controlling the FWER because a single mistake does not significantly
affect our conclusions. In this work, we are interested in comparing distributions against each other,
and so we are interested in controlling the proportion of mistakes, q, that we make rather than the
probability of making any mistake.

For an expected proportion of mistakes, q, the procedure proposed by Benjamini-Hochberg [23]
consists of the following: Let p1 ≤ p2 ≤ · · · ≤ pk ≤ · · · ≤ pNsegments

be the ordered p-values of
the Nsegments. We find the largest k such that:

pk ≤
k

Nsegments
q, (7)

and we reject the null hypothesis for all segments up to the kth one.

6 Results

Below we show the results of applying our methods on the dataset from [2]. Remember that at the
instruction cue, the monkey is instructed to reach to one of 8 equally spaced directions. We label the
different experimental conditions as {MVT1: 0◦, MVT2: 45◦, MVT3: 90◦, MVT4: 135◦, MVT5:
180◦, MVT6: 225◦, MVT7: 270◦, MVT8: 315◦}, where 0◦points in the positive x-axis and the
increase in angle is counter clockwise.

6.1 Null distribution and the choice of patch size

We performed N1perm = 1000 permutations to compute the permutation distribution of the test
statistics for each of the different patch sizes cases.

Table 1 lists the primary threholds computed for all experimental conditions for both R2 and PGD,
defined to be the 99th percentile of the permutation distribution of the corresponding test statistic.
What to note first is that the thresholds across experimental conditions (columns) are always very
similar. This is unsurprising, since we are expecting all of them to have the same kind of activity in
terms of strength, but possibly with differences in their wave properties, in particular the directions
of propagation. Second, we note that as the patch size increases, the threshold decreases (compare
rows 1 and 6). This reflects the fact that for smaller patch sizes it is easier to fit a linear approximation
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Row PS STAT MVT 1 MVT 2 MVT 3 MVT 4 MVT 5 MVT 6 MVT 7 MVT 8
1 3 R2 0.778 0.781 0.780 0.782 0.782 0.780 0.780 0.780
2 3 PGD 0.891 0.894 0.890 0.892 0.890 0.890 0.890 0.892
3 4 R2 0.525 0.524 0.527 0.526 0.524 0.524 0.526 0.525
4 4 PGD 0.783 0.784 0.780 0.782 0.777 0.779 0.778 0.784
5 5 R2 0.347 0.346 0.346 0.345 0.347 0.347 0.350 0.344
6 5 PGD 0.654 0.656 0.649 0.653 0.644 0.648 0.644 0.657

Table 1: Primary thresholds used to select time points where the test statistic is sufficiently strong.
Shows the 99th percentile of the null distribution for both the R2 and PGD statistics, across all
experimental conditions and for the 3 different choices of patch configurations.

to the phase data than for larger ones. Third, we note that the R2 is always smaller than the PGD
threshold (compare rows 1 and 2), and the difference gap increases with patch size (compare rows
5 and 6). This is again unsurprising because in the regression method we are fitting the model using
5 consecutive time points while PGD estimates are computed only at individual time points. We
therefore expect the R2 statistic to be more sensitive to permutations than the PGD statistic.

Fig. 8 shows the distributions of the test statistics under the null with the associated distributions of
the observed R2 and PGD timeseries statistics for patch sizes of 3× 3 (left subplot), 4× 4 (middle
subplot), and 5 × 5 (right subplot) in one example experimental condition (all others are similar).
As the patch size increases, both the R2 and PGD distributions become more peaky and have more
mass to the left of the axis, however the R2 distribution has a much sharper drop especially in the
5 × 5 patch size where the density beyond 0.5 is almost 0. In contrast, the PGD has probability
mass beyond that point. As the patch size decreases, the distribution of the observed PGD shifts
significantly towards one, but it is a less evident pattern in the case of the observed R2.

The less overlap there is between the null and the observed distribution the easier it will be to detect
the statistically significant patterns. At the same time, we are interested in analyzing local patterns
across the array. We therefore choose to continue the analysis with patches of size 4× 4 which have
a sharper null distribution than patches of size 3 × 3 and are more localized than patches of size
5× 5.

6.2 Global p-values and the choice of analysis method

We performed N2perm = 125000 permutations to compute the distribution of the maximal aggre-
gate statistic under the null hypothesis and q = 0.05 is the desired expected proportion of false
rejections of the null. Fig. 9 shows all the observed clusters (across trials, patches, and experimen-
tal conditions) ordered by their p-values as estimated using the regression method (left panel) and
using PGD (right panel). The first thing to note is that using R2 more observed clusters are found
that in the case of PGD, and more are retained by the FDR procedure (clusters below the green
line are wave segments). This is unsurprising given the bigger overlap between the null and the
observed distribution that we previously noted in the PGD case. We then choose to continue the
analysis using the regression method estimates which proved to be more powerful in detecting linear
patterns.

6.3 Different Activity across patches

Tables 2 and 3 summarize the statistically significant activity detected in patches averaged across
experimental conditions. Table 2 shows the number of trials where each patch contained at least 1
segment of statistically significant activity (i.e. it is active). The top left patch (compare 1st column
to last column) is always active, and in general the patches are active during most of the trials. Table
3 shows the average number of segments detected per patch per trial. Again, the top left patch is
the one with the largest number of segments per trial, followed by the bottom left, bottom right, and
then the top right patches. In the second row the associated average duration of a segment is similar
across patches, with the bottom right patch having the largest average duration. These results are a
first indication that the activity across the array is heterogeneous.

12



0 0.5 1
0

1

2

3

4

5

6

7

8

9

10

Point statistic

D
e
n

s
it

y

0 0.5 1
0

1

2

3

4

5

6

7

8

9

10

Point statistic
0 0.5 1

0

1

2

3

4

5

6

7

8

9

10

Point statistic

 

 

R
2
 trials

R
2
 null

PGD trials

PGD null

Figure 8: Distributions of the test statistics. Left panel: shows the null and observed distributions
in 3 × 3 patches for both R2 and PGD, Middle panel: shows the same for 4 × 4 patches, Right
panel: shows the same for 5× 5 patches.
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Figure 9: Observed cluster p-values for patches of size 4× 4 and the FDR rejection boundary. The
null is rejected for clusters below the green line. Left panel: shows the results of the regression
method. Right panel: shows the results of the numerical derivatives method.
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Top left (1) Bottom left (2) Top right (3) Bottom right (4) Trial Numbers
MVT1 47 46 45 46 47
MVT2 46 45 44 46 46
MVT3 52 47 51 50 52
MVT4 41 40 40 41 41
MVT5 53 51 47 52 53
MVT6 61 61 58 61 61
MVT7 43 42 43 41 43
MVT8 48 47 46 48 48

Table 2: Number of active trials per patch for all experimental conditions. The first 4 columns show
the numbe of trials where at least one wave segment is detected in each of the patches. The last
column shows the total number of trials for each experimental condition.

Top left (1) Bottom left (2) Top right (3) Bottom right (4)
Avg. number of segments 12± 0.8 9± 1.1 6± 0.3 8± 1.2
Avg. segment duration 21.8 ms 21.5 ms 22.7 ms 24.1 ms

Table 3: Mean patch activity across experimental conditions. The first row shows the average num-
ber of selected patterns per patch per trial with its standard deviation, The second row shows the
average total duration of selected patterns per patch per trial.

6.3.1 Mean Direction across experimental conditions

In Fig. 10 we show the distribution of the directions of the significant patterns that start after the
instruction cue. We overlay the mean direction in red, with a radius equal to the resultant vector
length. We lay the results from all experimental conditions in a square, where every block, represents
an experimental condition, and is placed corresponding to the target direction. The subplots in every
block represent the patches of size 4×4 (4 patches) and we number the patches in row major format
(e.g., patch 2 corresponds to the patch in the second row and 1st column).

We first note that there is considerable heterogeneity across the patches. Second, we note that the
overall pattern per patch are relatively stable across experimental conditions in comparison to the
differences across patches. For example, the directions of the top left patches are usually bimodal
and with a stonger bias toward the upper left quadrant, while the directions of the bottom right
patches are consistently found in the bottom half of the directions axes. The numbers on top of
each rose plot corresponds to the number of segments whose mean directions are shown. We also
investigated the differences between the directions in a same patch location across experimental
conditions. While we have found some statistically significant differences (with p-values < 0.001),
we found that the effect size was too small to be interesting to elaborate on this point.

7 Discussion

In this work, we have presented a statistical methodology for the analysis of linear wave patterns in
LFP recorded by a 10×10 Utah grid array. The main steps of this procedure were first the definition
of a null hypothesis with a way to simulate draws from it, second an excursion test procedure which
controls globally for the Type I error in a trial, and third an FDR procedure which increases the
sensitivity of the test while controlling the proportion of false rejections of the null. The particular
null hypothesis that we defined in this work was that the phase patterns were random across the entire
array. Using this procedure we analyzed the local patterns of statistically significant linear waves
by dividing the array into smaller 4 × 4 patches and focusing in particular on the mean directions
of propagation of wave segments. Our results suggest that there is spatial heterogeneity across
patches both in terms of number of patterns found across different patches and the distributions of
their mean directions of propagations. However, we were not able to find systematicity in how the
patterns change as a function of location inside the array or as a function of target direction.

Once the null hypothesis defined, the identified wave patterns depended on a few choices we made,
the main one being how variable we allowed the direction of propagation of a single wave segment
to be. However, we found that the identified relative numerosity of patterns and directions of prop-
gations were robust to a variety of other parameter choices which suggest that the patterns we found
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Figure 10: Direction rose plots of significant patterns in all patches and all experimental conditions
in 4 × 4 patches, taken within 500ms after the instruction cue. The experimental conditions are
organized based on the direction of the target movement, and the patches are orgaznized based on
their order on the array. We indicate the number of wave segments for which the mean angle is
included in the rose plot on top of every patch.
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are real and quite strong. Our statistical analysis demonstrated important differences between the
regression and the numerical differentiation methods. In particular, due to the noisier estimates by
the PGD method, it detected a smaller number of statistically significant patterns. In both cases, we
found that the estimation of speed of propagation was the most unreliable and diverged significantly
between the two methods.

Future improvements to this line of work concern improving the phase unwrapping by combining it
with a 3-dimensional smoothing algorithm. Our initial exploration (not presented here) pointed us
in a couple of directions to do that. Either first use a 3-dimensional nonparametric smoothing algo-
rithm in the phase domain and then unwrap the smoothed phase, or instead use a Kalman smoothing
algorithm that performs both operations simultaneously. We expect that this additional step will im-
prove the speed estimation which has proved to be the most challenging. In addition, a more specific
definition of the null (beyond complete randomness) might improve robustness of the results.

The main limitation of this approach is the assumption that the phenomenon is contained in a narrow-
band frequency signal. As we have noted before, given that the signal is broad band it is likely
that a better model to represent it is a superposition of several linear waves instead of only one.
A future direction of work could be that of modeling the entire wide-band signal, using periodic
autoregressive models for example. Another assumption we make is that the real difference between
any adjacent phase points (both in time and space) is less than π. This assumption is commonly made
to do the unwrapping, however more investigation is needed to know if it is valid in our setting.

This work is a first step towards investigating the morphology of linear waves in the motor cortex.
A direct extension of the analysis will be to look at the different wave properties (e.g. speed, timing,
duration, etc.) in relation to behavior and exact location of the electrodes in the cortex as well as to
analyze more datasets.
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