
Cost-Effective Feature Selection and Ordering

for Personalized Energy Estimates

Kirstin Early
Machine Learning Department
Carnegie Mellon University

kearly@cs.cmu.edu

Abstract

Background Selecting homes with energy-efficient infrastructure is important for renters, because in-
frastructure influences energy consumption more than in-home behavior. Personalized energy estimates
can guide prospective tenants toward energy-efficient homes, but this information is not readily avail-
able. Utility estimates are not typically offered to house-hunters, and existing technologies like carbon
calculators require users to answer prohibitively many questions that may require considerable research
to answer.

Aim We want to provide prospective tenants with personalized predictions for energy consumption
that are certain (have narrow prediction intervals), accurate (are close to the true values), and cheap
(require minimal burden on the user from answering questions). Giving energy estimates for a household
requires eliciting information about that household; our goal is to strategically order questions so that
the most informative features are answered first, to give confident predictions with minimal user burden.

Data The Residential Energy Consumption Survey (RECS) records energy consumption by fuel type
and around 500 household features for homes across the U.S.; we can use this dataset to learn relationships
between household features and energy consumption to predict energy usage for prospective tenants. We
restricted our analysis to the 2470 homes in the same climate zone as Pittsburgh.

Methods For the task of providing personalized utility estimates to prospective tenants, we present a
cost-based model for feature selection at training time, where all features are available and costs assigned
to each feature reflect the difficulty of acquisition. At test time, we have immediate access to some
features but others are difficult to acquire (costly). In this limited-information setting, we strategically
order questions we ask each user, tailored to previous information provided, to give the most certain
predictions while minimizing the cost to users.

Results During the critical first 10 questions that our approach selects, prediction accuracy improves
proportionally to fixed order approaches, but prediction certainty is higher. We can then make useful
predictions at only 30% of the cost of the full-feature model.

Conclusion Dynamically ordering questions at test time allows prospective tenants to receive certain
and accurate estimates for energy consumption in potential future homes, without requiring them to
collect prohibitively costly amounts of detailed information about each unit.

1 Introduction

Home infrastructure impacts energy usage far more than occupant behavior (Dietz, Gardner, Gilligan, Stern,
& Vandenbergh, 2009), yet most efforts to reduce energy consumption focus on behavior because infrastruc-
ture upgrades are often costly. However, this ignores the impact of choosing among potential homes. In
particular, 30% of the U.S. population rent, and renters move on average every two years (U.S. Census Bu-
reau, 2013). They can potentially choose improved infrastructure more frequently than we can expect
homeowners to upgrade. A tangible measure of infrastructure quality is utility cost, often a hidden factor

1

in tenant cost. In addition to guiding apartment-seekers toward energy-efficient housing, utility estimates
can also give prospective tenants cost-of-living estimates to help them make informed decisions about where
to live. However, utility costs for apartment units are not readily available. Prospective tenants can ask
landlords (or current occupants) for typical utility charges, but these estimates may not be appropriate, as
occupant behavior can change energy usage by as much as 100% (Seryak & Kissock, 2003). Additionally,
many prospective tenants (especially first-time renters) might not think to ask these questions.

Since energy consumption depends on home infrastructure (e.g., square footage) and occupant behavior
(e.g., preferred temperature), we can learn the relationship between these features and energy consump-
tion through established datasets, like the Residential Energy Consumption Survey (RECS) (U.S. Energy
Information Administration, 2009). Some information can be extracted automatically from online rental
advertisements, while other information must be provided by prospective tenants at various costs (for ex-
ample, the question of how many windows a home has requires more effort to answer than how many people
will live there). To develop a predictive model of energy consumption at training time, we begin with the
extractable (i.e., “free”) features in a regression model to predict energy usage and use forward selection to
add a subset of the costly features.

After learning this predictive model on the training dataset, the main problem lies in how to make a
prediction on a new test instance. Initially, only a subset of the features (the free features) in the model are
available, and asking users for each unknown value incurs a cost, depending on how hard it is to provide
that feature. Our dynamic question-ordering algorithm (DQO) chooses the best question to ask next by
considering which feature, if its value were known, would most reduce uncertainty, measured by the width
of the prediction interval, with a penalty term on that feature’s cost.

We validated our question-ordering approach on a test subset of RECS by calculating prediction error,
uncertainty, and cost as questions are asked. DQO achieves similar accuracy as several fixed-order baselines
after asking only 10 questions (30% of the cost of all features), but the fixed orderings do not approach
DQO’s certainty until 20 questions.

2 Related work

Many previous studies consider modeling residential energy usage, either to reduce consumption (e.g., (Van Raaij
& Verhallen, 1983)) or to inform consumers about their energy usage (e.g., carbon calculators (Pandey,
Agrawal, & Pandey, 2011)). However, these methods require information that prospective tenants cannot
easily provide. We first review past work in modeling residential energy consumption, with emphasis on the
information that is assumed to be available. Next, we cover previous work in building predictive models
that reduce the cost of future predictions and in gathering information of various costs to make confident,
accurate predictions on a new instance at test time.

2.1 Residential energy modeling

Prior work modeling residential energy consumption falls into two categories: top-down and bottom-up
analyses (Swan & Ugursal, 2009). Top-down approaches model aggregate residential energy consumption on
broad characteristics, such as macroeconomic indicators, historical climate data, and estimates of appliance
ownership. For example, Haas and Schipper (1998) tested several econometric models that used aggregate
residential energy demand, fuel prices, income, and heating degree days to forecast energy consumption in
the residential sector. They found that an asymmetrical price elasticity model best fits the data, indicating
that the reason energy demand does not surge after price decreases is because people invest in irreversible
efficiency improvements—upgrading the infrastructure of their homes. Labandeira, Labeaga, and Rodŕıguez
(2005) also used aggregate data in econometric models; they found that energy products are inelastic in
Spain. In contrast, bottom-up methods model consumption at a more granular level, using features of
individual households. Household features may include the macroeconomic indicators from the top-down
approach, as well as occupant-specific features. For example, Douthitt (1989) examined fuel consumption for
space heating in Canada, using household-specific values for occupant demographics, the housing structure,
and fuel cost. Kaza (2010) used RECS to estimate energy usage from low-level housing characteristics, with
a quantile regression approach to separate the effects of variables on homes with different patterns of energy
consumption. However, past work has not explored the feasibility of estimating energy consumption with the

2

limited information available in rental advertisements, nor how to incorporate additional, costly information
from occupants into the estimation.

2.2 Cost-effective feature selection and ordering

Here, “cost” refers to the costs of obtaining values for individual features, as opposed to the costs of types of
errors, as in cost-sensitive learning (Elkan, 2001), or the costs of acquiring labels for instances, as in active
learning (Cohn, Ghahramani, & Jordan, 1996).

In the supervised learning setting, a training set of samples (each with D features) with labels is available,
and the goal is to learn a function that maps features to labels. Feature selection, choosing d < D relevant
features, improves prediction performance by reducing both overfitting and feature-acquisition costs for test
instances (Guyon & Elisseeff, 2003). Many feature selection algorithms do not incorporate feature-specific
costs, but such cost measures can represent the true cost of feature sets.

After learning a predictor on a subset of d cost-effective features, making a prediction on a test instance
requires gathering feature values, which can be costly, especially if it requires cooperation from users who
might stop before completion. In this case, strategically ordering questions asked (based on previous answers)
can get the most useful information first, while providing predictions on partial information. This way, people
receive meaningful predictions without spending much time or effort answering questions.

The test-time feature ordering problem resembles active learning, which assumes labels are expensive.
Active learning algorithms strategically select which unlabeled points to query to maximize the model’s
performance (using both labeled and unlabeled data) while minimizing the cost of data collection (Cohn
et al., 1996). Test-time feature ordering has a similar goal of making accurate predictions while keeping
data collection costs low; however, rather than choosing an example to be labeled, test-time feature ordering
chooses a single feature to be entered (by asking the user a question).

2.2.1 Training-time feature selection

Several algorithms incorporate unique feature costs into supervised learning by penalizing the benefit of
adding a feature by the cost of that feature. For example, Davis, Ha, Rossbach, Ramadan, and Witchel
(2006) develop a cost-sensitive decision tree algorithm by modifying the ID3 splitting criterion, maximizing
information gain (Quinlan, 1986), to penalize feature costs. They apply this method to forensic classification,
where events cannot be reproduced and so all features need to be acquired before classification; cost refers
to computational overhead for features. Saeedi, Schimert, and Ghasemzadeh (2014) take a related approach
to build a low-cost classifier for sensor localization: a greedy algorithm selects the best feature, in terms
of contribution to prediction performance and power consumption, and adds it to the model until accuracy
meets a threshold; cost in their setting reflects power consumption.

2.2.2 Test-time feature ordering

At test time, the goal is to make a prediction on a new example. Some features are initially available, but
others must be acquired at cost. Ordering the features to ask, based on known values, can improve prediction
while keeping feature acquisition costs low. He, Daumé III, and Eisner (2012) consider a similar setting,
where all features are available for training, and at test time they want an instance-specific subset of features
for prediction, trading off feature cost with prediction accuracy. They formulate dynamic feature selection
as a Markov decision process. The policy selects a feature to add; the reward function reflects the classifier
margin with the next feature, penalized by the cost of including that feature. However, this method does
not make sequential predictions, and instead only chooses whether to keep getting features or to stop and
make a final prediction.

Dynamically ordering questions in a survey, based on previously-answered questions, can be considered
an adaptive survey design (ASD). ASD attempts to improve survey quality (higher response rate, lower
error) by giving respondents custom survey designs, rather than the same one (Schouten, Calinescu, Luiten,
et al., 2013). Usually ASD tries to minimize nonresponse, and designs involve factors like number of follow-
ups, which can be costly. The general technique is to maximize survey quality, while keeping costs below a
budget.

3

Another related area is personalization, where a system suggests items from user preferences. However,
the cold-start problem makes it hard to give recommendations at first, when the system knows nothing about
the user, including which questions to ask. Sun et al. (2013) present a multiple-question decision tree for
movie recommendation, where each tree node asks users for opinions on several movies, rather than just one.
This model lets users sooner provide information about movies they have seen, but it is designed to minimize
the number of questions and not the amount of effort required to answer questions of varying difficulty.

Most work in test-time feature ordering does not consider the situation of providing predictions with
partial information as questions are answered, nor does it address the issue of giving measures of prediction
uncertainty to users. Our work fills this gap to provide personalized energy estimates with limited, costly
information to prospective tenants.

3 Problem and approach

We address two problems: (1) at training time, how to build a model that efficiently uses features of various
costs, and (2) at test time, how to order costly questions we ask a user so that we can make confident predic-
tions on limited information about a new instance. At training time, we use a cost-aware feature selection
approach that adds higher-cost features to a regression model to predict household energy consumption.
For making a prediction on a new test point, we develop a novel cost-effective dynamic question-ordering
algorithm that sequentially chooses features to ask according to how much they are expected to reduce the
uncertainty of the next prediction, penalized by the cost of each feature.

4 Method

4.1 Training time: cost-aware feature selection

A greedy approximation to feature selection, forward selection starts with an empty feature set and, at each
iteration, adds the feature that minimizes error (Harrell, 2001; Tropp, 2004). For this analysis, we started
with the free extractable features (rather than no features, as in classic forward selection) and minimized
leave-one-out cross-validation error with linear regression to add successive higher-cost features.

4.2 Test time: cost-effective dynamic question ordering

After learning regression models for energy usage on the selected features from our training set, we want
to make a prediction on a new test point, where initially only some features of the model are available.
Our approach considers a trajectory of prediction intervals as a user provides information. A prediction
interval consists of a lower and upper bound such that the true value lies in this interval with at least
some probability (Weisberg, 2014). Prediction interval width corresponds to prediction uncertainty: a wider
interval means less confidence. We select as the optimal next question the one whose inclusion most reduces
the expected value of the prediction interval width; that is, it most reduces the expected uncertainty of the
next prediction.

In this problem, there are features that are unknown (not yet supplied by the user). We use k nearest
neighbors (kNN) (Cover & Hart, 1967) to supply values for unanswered features in vector x ∈ Rd. For each
unknown feature f , we find the k data points in the training set X ∈ Rn×d (n samples, each d-dimensional)
that are closest to x, along the dimensions K that are currently known. Then we estimate xf as zf , the
mean or mode, as appropriate, of feature f in the k nearest neighbors (depending whether the feature is
continuous or discrete) (see Algorithm 1).

Because these z values estimate unknown features of x, we use the measurement error model (MEM) (Fuller,
2009) to capture error associated with estimated features. Unlike traditional regression models, MEMs do
not assume we observe each component xf exactly; there is an error δf associated with the estimation:

zf = xf + δf , where E[δf |xf] = 0.

Prediction ŷ still depends on the true, unobserved value x:

ŷ = β̂T x̄ = β̂(z̄ + δ̄),

4

Algorithm 1 Estimating values z for still-unknown features

Input: X ∈ Rn×d, x ∈ Rd,K ⊆ {1, ..., d}, k ∈ Z+

Output: z ∈ Rd
1: function estimate features(X,x,K, k)
2: zK ← xK . Copy over the known features
3: I ← get knn(X:,K, zK, k) . Index zK’s kNNs
4: for f ∈ {1, ..., d} \ K do . For all unknown f
5: zf ← mean(XI,f) . Estimate zf from kNNs’ values for feature f
6: end for
7: return z
8: end function

where β̂ ∈ Rd+1 is the parameter vector learned on the training set X (recall all feature values are known
at training time). The notation x̄, z̄, δ̄ means vectors x, z have a 1 appended to them and δ a 0 to account
for the constant term in the regression. Let X̄ extend this notion to the training matrix: X̄ = [1nX].

Recall that Var(β̂) = σ2(X̄T X̄)−1, where σ2 is the variance of the regression error. Then, we can calculate
the variance between the true value y and the estimated value ŷ as

Var(y − ŷ) = Var(y − β̂T (z̄ + δ̄))

= Var(y) + Var(β̂T (z̄ + δ̄))

= σ2 + σ2z̄T (X̄T X̄)−1z̄ + σ2δ̄T (X̄T X̄)−1δ̄

= σ2
(
1 + z̄T (X̄T X̄)−1z̄ + δ̄T (X̄T X̄)−1δ̄

)
.

Because the unbiased estimator of σ2 is σ̂2 =

n∑
i=1

(yi−ŷi)2

n−(d+1) ,

T =
y − ŷ√∑

(yi−ŷi)2
n−d−1

(
1 + z̄T (X̄T X̄)−1z̄ + δ̄T (X̄T X̄)−1δ̄

)
∼ tn−d−1.

Therefore, we can calculate a 100(1− α)% prediction interval for a new point z as

ŷ ± tn−d−1;α/2 ·
√
σ̂2
(
1 + z̄T (X̄T X̄)−1z̄ + δ̄T (X̄T X̄)−1δ̄

)
, (1)

where the δ̄T (X̄T X̄)−1δ̄ term accounts for error from estimated features and tn−d−1;α/2 is the value at which
a Student’s t distribution with n− d− 1 degrees of freedom has cumulative distribution function value α/2.
We can estimate δ from training data by calculating the error of predicting each feature with kNN, from the
other features. We also estimate σ̂2, the regression variance, from training data.

Then, we cycle through each candidate feature f and compute the expected prediction interval width
E[w(f)] for asking that feature next, over each value r that feature f might take on from its range of potential
values R:

E[w(f)] = 2 · tn−d−1;α/2
∑
r∈R

p(zf = r) ·

√
σ̂2

(
1 + z̄Tf :=r(X̄

T X̄)−1z̄f :=r + δ̄Tf :=0(X̄T X̄)−1δ̄f :=0

)
, (2)

where p(zf = r), the probability that the f -th feature’s value is r, is calculated empirically from the training
set, and the notation ūf :=q means the f -th component of u is replaced with the value q. Algorithm 2 writes
this process in pseudocode. In this algorithm, feat ranges and feat proportions are both d-dimensional cell
arrays where the f -th cells contain, respectively, the set of values R that feature f can take on and the
proportions p ∈ R|R| that each value r ∈ R appears in the training set. The output, E ∈ Rd, is a vector
where the f -th component is the expected prediction interval width if the value of feature f were known.

5

Algorithm 2 Calculating the expected prediction interval width for each candidate feature to be asked

Input: X ∈ Rn×d, K ⊆ {1, ..., d}, z ∈ Rd, δ ∈ Rd,
σ̂2 ∈ R, α ∈ [0, 1], feat ranges, feat proportions

Output: E ∈ Rd
1: function Expected interval width(X,K, z, δ, σ̂2, α, feat ranges, feat proportions)
2: v ← 0

d

3: X̄ ← [1NX]
4: for f ∈ {1, ..., d} \ K do
5: R← feat ranges{f}, u← 0

|R|

6: for ` ∈ {1, ..., |R|} do
7: z̄ ← [1; z], z̄f+1 ← R`
8: δ̄ ← [0; δ], δ̄f+1 ← 0
9: u` ← z̄T (X̄T X̄)−1z̄ + δ̄T (X̄T X̄)−1δ̄

10: end for
11: p← feat proportions{f}
12: vf ← pTu
13: end for
14: return E ← 2 · tn−d−1;α/2

√
σ̂2(1 + v)

15: end function

Algorithm 3 Dynamically choosing a question ordering A and making a sequence of predictions ŷ at the
current feature values and estimates as feature values are provided

Input: X ∈ Rn×d, x ∈ Rd, K ⊆ {1, ..., d}, k ∈ Z+,
δ ∈ Rd, α ∈ [0, 1], feat ranges, feat proportions,

β̂ ∈ Rd+1, σ̂2 ∈ R, λ ∈ R, c ∈ Rd
Output: A ⊆ {1, ..., d}, ŷ ∈ R|A+1|

1: function DQO all(X, x, K, k, δ, α, feat ranges, feat proportions, β̂, σ̂2, λ, c)
2: A ← {}, ŷ ← {}
3: for i ∈ {1, ..., d− |K|} do
4: z ← estimate features(X,x,K, k)

5: ŷi ← β̂T z . Predict on features and estimates
6: E ← Expected interval width(X, K, z, δ, σ̂2, α, feat ranges, feat proportions)
7: f? ← arg min

f /∈K
(Ef + λ · cf)

8: A ← A∪ {f?},K ← K ∪ {f?}
9: zf? ← xf? . Ask and receive value for f?

10: δf? ← 0 . No more uncertainty in f?

11: end for
12: z ← estimate features(X,x,K, k)

13: ŷd−|K|+1 ← β̂T z . Make final prediction
14: return A, ŷ
15: end function

Including the feature that attains the narrowest expected prediction interval width E[w(f)] will reduce
the uncertainty of our prediction more than any other feature. This approach allows incorporation of feature
cost into the question selection, by weighting the expected prediction interval width against the cost of
acquiring the feature:

f? = arg min
f

(E[w(f)] + λ · cf),

where cf is the cost of feature f and λ ∈ R trades off feature cost with reduced uncertainty. A high-cost
feature might not be chosen, if another feature can provide enough improvement at lower cost. We ask for
this information, update our vector of known data with the response (and estimate the unknown features

6

again, now including the new feature in the set for kNN prediction), and repeat the process until all feature
values are filled in (or the user stops answering). Algorithm 3 formalizes this dynamic question-ordering
(DQO) process.

More generally, this algorithm can be seen as a framework that makes predictions on partial information
and selects which feature to query next by 1) estimating values for unknown features (here with kNN) and 2)
asking for the feature that will most reduce the expected uncertainty of the next prediction (here measured
by prediction interval width). With this approach, we strategically order questions, tailored to previous
information, to give accurate predictions while minimizing the user burden of answering many or difficult
questions that will not provide a substantial reduction in prediction uncertainty.

5 Data

The Residential Energy Consumption Survey (RECS) contains information about home infrastructure, oc-
cupants, and energy consumption. We can use this dataset to learn relationships between household features
and energy consumption to predict energy usage for prospective tenants. The most recently released RECS
was a nationally representative sample of 12,083 homes across the U.S. (U.S. Energy Information Adminis-
tration, 2009). For each household, RECS records fuel consumption by fuel type (e.g., electricity, natural
gas) and around 500 features of the home (e.g., age of refrigerator, number of occupants).

5.1 Defining feature costs

In our problem setting, features have different costs of obtaining, and we want to build models and make
predictions that leverage features cost-effectively. Some information is easily found in the rental listing (e.g.,
number of bedrooms) and is therefore “free,” while other information requires asking users. For example,
the number of windows does not appear in listings and would require a prospective tenant to visit each site;
consequently, this question has high cost. Other useful features relate to occupant behavior (e.g., preferred
temperature). These questions likely remain constant for each user across homes and therefore require asking
only once and are cheaper. We assign the cost of each feature as one of eight categories, depending on how
difficult it is to acquire a value for that feature. Table 1 lists the cost categories and examples of RECS
features in each category. Category 0 indicates that the feature can be extracted from a rental listing,
categories 1 and 2 relate to occupant behavior, and categories 3 through 7 are unit-related features that
cannot be extracted from a rental listing. Table 2 lists the information used for extractable (i.e., category 0)
features and how often it appears in Rent Jungle, a company that scrapes rental listings from the internet;
these “free” features appear in the majority of listings on Rent Jungle.

Table 1: Feature cost reflects how difficult it is to acquire a value for a feature. Note that the cost of a
feature might vary by home: for example, if a listing included pictures of the kitchen, a user could see the
door arrangement of the refrigerator from the listing (cost 3). If there were no pictures, then it would be an
easily-visible feature (cost 5).

Cost Method of answering Example feature from RECS
0 Extractable from listing Number of bedrooms
1 User probably already knows If someone stays home during the day
2 Might have to check current home Size of TV
3 Could find in rental listing, or call for easy answer Washing machine in home
4 Look up online Year housing unit was built
5 Easily visible during visit High ceilings
6 Requires more effort to find out during visit Type of glass in windows
7 Requires visit + looking something up Age of heating equipment

7

Table 2: The features we define as extractable (i.e., “free”) appear in most of the listings on Rent Jungle.
Geographic features associated with the city, zip code, or state include climate zone and whether the area is
urban or rural, among others.

Feature Presence in Rent Jungle database
Number of bedrooms 85%
Number of full bathrooms 57%
Studio apartment 85%
City or zip code 99%
State 100%

6 Experimental validation

We validated our training-time feature selection and test-time feature ordering approaches on the RECS
dataset for predicting household electricity and natural gas consumption. We restricted our analysis to homes
in the same climate zone as our planned deployment location in Pittsburgh, a subset of 2470 households in
climate zone 2. We used 90% of these homes for training and the remaining 10% for testing. The training
set was further subdivided into feature selection and cross-validation subsets. We trained separate models
for predicting electricity consumption (on all homes in our climate zone) and for predicting natural gas
consumption (on the 75% of homes that use natural gas).

6.1 Training time: cost-aware feature selection

We can reasonably assume all zero-cost features are available (since these can be extracted from the rental
listing). However, for higher-cost groups, we need to know how many features are needed in practice. We
analyzed the predictive power of selecting features based on cost. To do a simple comparison of the added
benefit of including higher-cost features into a regression model, we simplified the eight-category feature cost
from Table 1 into three categories: free features, occupant-related features, and unit-related features. The
16 features in category 0 can be automatically extracted from online rental listings and are therefore free.
Categories 1 and 2 (132 features total) relate to the occupants living in a home and their habits. These
features are mid-cost because people can answer questions about their household relatively easily, and these
features will likely remain constant regardless of where someone lives (e.g., an occupant will probably have
the same preferred temperature in any home). Categories 3 through 7 (312 features total) relate to the unit
and require effort on the part of the user to answer. These features are high cost because a person does not
know this information for an apartment already (unlike occupant-related features), and so they need to look
something up or make a site visit to assess in-person. Furthermore, these features need to be entered for
every apartment a user is considering.

Figure 1 summarizes the fraction of explained variance for these feature groups, on the 20% of the training
set used for feature selection. Although extractable (cost 0) features explain only 21-34% of variance, the
full feature set (costs 0-7) explains 99-100% of the variance.

Figure 2 shows how the degree of variance explained changes as higher-cost features are added in forward
selection. The steep trajectory means the first few features added have a big impact on the explained
variance, with about 10 costlier features needed to explain 60% of the variance, and 28 costlier features to
explain 70% of the variance of electricity usage, on the feature selection subset. Natural gas performance is
similar to electricity, as shown in Figure 2.

Based on this analysis, we chose 60 features (30 each for electricity and natural gas), plus the 16 low-cost
features. We selected 30 for each prediction task both because our exploration demonstrates that that many
can explain a substantial amount of the variance, and also to avoid overfitting in our final model from having
too many features. Table 3 gives examples of features that are most predictive for electricity and natural
gas prediction.

8

0

0.2

0.4

0.6

0.8

1

Free
(16 features)

Occupant
(132)

Unit
(312)

Free +
occupant

(148)

Free + unit
(328)

All features
(460)

F
ra

ct
io

n
of

 e
xp

la
in

ed
 v

ar
ia

nc
e

Electricity
Natural gas

Figure 1: Different cost levels of features provide different prediction performances, measured by fraction
of variance captured by a regression model (values closer to one indicate better performance). Occupant
features are “mid-cost” (costs 1-2) and unit features are “high-cost” (costs 3-7).

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Electricity R2 on free features

Electricity R2 on free and occupant features

Electricity R2 on unit features

Electricity R2 on all features

Natural gas R2 on free features

Natural gas R2 on free and occupant features

Natural gas R2 on unit features

Natural gas R2 on all features

Number of features

F
ra

ct
io

n
of

 e
xp

la
in

ed
 v

ar
ia

nc
e

Figure 2: The fraction of explained variance for electricity (dashed) and natural gas (solid) usage as features
are added in forward selection, starting with the extractable, free (cost 0) features. Including 30 higher-cost
features for electricity and natural gas prediction can explain most of the variance of energy usage.

9

Table 3: Some features selected via forward selection for predicting electricity and natural gas consumption.

Electricity Natural gas
Temperature at night in summer Temperature at night in winter
Energy-star refrigerator Number of rooms heated
Number of household members Year housing unit was built
Number of computers used Water heater size

We then used tenfold cross-validation on the remaining 80% of the training set to learn regression coef-
ficients for the chosen features. Figure 3 summarizes performance of our final predictor on a held-out test
set, as well as on the feature-selection training set and the parameter-selection cross-validation set.

0

0.2

0.4

0.6

0.8

1

Feature
selection

Cross−
validation

Test

F
ra

ct
io

n
of

 e
xp

la
in

ed
 v

ar
ia

nc
ed

Electricity
Natural gas

Figure 3: Our final predictor explains 56% of the variance on a held-out test set (values closer to one indicate
better performance).

6.2 Test time: cost-effective dynamic question ordering

After learning regression models for electricity and natural gas prediction on the training set, we want to make
predictions of energy usage for a new test point. We use our dynamic question-ordering framework (DQO)
to make sequential predictions with partial, evolving information. To apply DQO, we first used the training
set to choose parameters for imputing unknown features (k, from Algorithm 1, estimate features) and to
estimate the measurement error δ (from Algorithm 2, Expected interval width). Then, we simulated
question-asking on RECS to evaluate the performance of DQO for test-time feature ordering.

6.2.1 Parameter selection and estimation

We used the training set to choose k = 100 for imputing the values of features that have not yet been
asked, based on the prediction performance of kNN for the higher-cost features. Then, we estimated the
measurement error δf for each feature as the error from kNN on the training set.

6.2.2 Simulating the question-asking and -answering process with RECS

We simulated the process of asking and answering questions on the testing subset of RECS by hiding the
values for features that were not yet known. After we used DQO to choose a feature to acquire (line 7 in

10

Algorithm 3, DQO all), we “asked” this question and unveiled its value (line 9 in Algorithm 3) once it was
“answered.”

6.2.3 Evaluating DQO performance with prediction certainty, error, and cost

We evaluated the performance of our cost-effective DQO algorithm in making sequential predictions with
partial, evolving information on a held-out test set. For comparison, we implemented several baselines. The
Oracle chooses the next best feature according to the minimum true prediction interval width (calculated on
the test sample using true feature values, rather than the expected width as in Algorithm 3). We tested two
versions of DQO and oracle: ordering additional features without cost and with cost (implemented as λ = 0
and λ > 0). In addition, we implemented a Random algorithm which chooses a random question ordering for
each sample; a Fixed Decreasing algorithm, which asks questions in decreasing order of feature measurement
error δf (identical ordering for all samples); and a Fixed Selection algorithm, which asks questions in the
order of forward selection in the training phase (also identical for all samples).

We calculated several metrics related to the trajectory of prediction performance and cost, for orderings
given by the seven algorithms: DQO and Oracle with and without cost, Random, Fixed Decreasing, and
Fixed Selection. We summarized prediction performance with the width of the current prediction interval
(prediction certainty) and the absolute value of the difference between the current prediction and the truth
(prediction error); we also measured the cumulative cost of all features asked at each step (prediction cost).
We report on performance for two separately trained regressions (for electricity and for natural gas). Table 4
summarizes the metric trajectories for electricity and natural gas as areas under the curve—smaller values
are better because they mean the algorithm spent less time in high uncertainty, error, and cost.

Certainty metrics For certainty, we calculated widths of 90% prediction intervals as features were an-
swered. Since narrower prediction interval widths correspond to more certain predictions, we expect DQO
interval widths to be less than those of the baselines, particularly in the early stages. Figure 4 plots the
actual prediction interval widths as questions are asked (calculated with Equation 1, using the true known
feature values and imputed values for unknown features), averaged across the test dataset, for the question
sets from the seven orderings. The DQO sets result in the narrowest (or near-narrowest) prediction intervals
(i.e., most certain predictions), compared to the baselines, with improvements most notable in the first 10
questions answered—the situation that arises when users do not answer all the questions.

0 5 10 15 20 25 30
1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.48

Number of user−answered questions

A
ct

ua
l p

re
di

ct
io

n
in

te
rv

al
 w

id
th

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(a) Electricity.

0 5 10 15 20 25 30
1.62

1.625

1.63

1.635

1.64

1.645

Number of user−answered questions

A
ct

ua
l p

re
di

ct
io

n
in

te
rv

al
 w

id
th

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(b) Natural gas.

Figure 4: Prediction interval widths as questions are asked: DQO results in more certain predictions (i.e.,
lower prediction interval widths) than the baseline orderings.

11

Error metrics For error, we calculated the absolute value of differences between predictions and truth as
questions are answered, plotted in Figure 5. For all orderings, predictions approach the true value as questions
are answered. Once about 10 questions have been asked, DQO with cost reaches similar performance as DQO
without cost and the fixed-order baselines (Fixed decreasing and Fixed selection).

0 5 10 15 20 25 30
0.3

0.35

0.4

0.45

0.5

0.55

Number of user−answered questions

|y
_t

ru
e

−
 y

_h
at

|

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(a) Electricity.

0 5 10 15 20 25 30
0.3

0.35

0.4

0.45

0.5

0.55

Number of user−answered questions

|y
_t

ru
e

−
 y

_h
at

|

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(b) Natural gas.

Figure 5: Mean absolute error as questions are asked: DQO results in similarly-correct predictions as
baselines.

Cost metrics Progressive total feature costs as features are asked and their true values are used in the
models are plotted in Figure 6. Cumulative feature costs are lower for orderings that penalize feature cost
(DQO, Oracle with cost), with cost decreasing as the penalty on cost λ increases. The other orderings have
similar cost trajectories to each other.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

110

Number of user−answered questions

T
ot

al
 c

os
t o

f q
ue

st
io

ns
 a

ns
w

er
ed

 s
o

fa
r

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(a) Electricity.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

110

Number of user−answered questions

T
ot

al
 c

os
t o

f q
ue

st
io

ns
 a

ns
w

er
ed

 s
o

fa
r

DQO with λ=0.0000
DQO with λ=0.0001
DQO with λ=0.0010
DQO with λ=0.0050
DQO with λ=0.0100
Random
Fixed decreasing
Fixed selection
Oracle with λ=0.0000
Oracle with λ=0.0001
Oracle with λ=0.0010
Oracle with λ=0.0050
Oracle with λ=0.0100

(b) Natural gas.

Figure 6: Total feature costs as questions are asked: the tradeoff parameter λ influences when expensive
features are included.

Overall, these metrics show that our test-time DQO approach quickly achieves accurate, confident pre-
dictions: by asking around 10 questions, DQO (with and without cost) reaches similar accuracy as the

12

fixed-order baselines, but the sequential predictions by the fixed orderings are less confident than DQO until
about 20 questions have been asked.

Table 4: Areas under the curve for the certainty, error, and cost metrics from various methods, for electricity
and natural gas prediction: smaller values mean the algorithm spent less time in high uncertainty, error, and
cost.

Method
Electricity Natural gas

Int. width |y − ŷ| Cost Int. width |y − ŷ| Cost
DQO with λ = 0.0000 42.68 12.48 1485.80 49.04 13.07 1483.46
DQO with λ = 0.0001 42.67 11.76 1102.23 49.04 12.44 1240.19
DQO with λ = 0.0010 42.77 11.73 1013.78 49.10 12.40 1162.26
DQO with λ = 0.0050 42.91 11.99 988.34 49.29 12.21 1137.07
DQO with λ = 0.0100 42.94 12.02 987.56 49.31 12.20 1135.63
Random 42.53 14.72 1532.40 48.83 14.24 1639.48
Fixed decreasing 42.55 13.86 1134.31 48.85 14.19 1329.16
Fixed selection 42.59 12.28 1022.47 48.93 13.79 1176.79
Oracle with λ = 0.0000 42.71 12.23 994.78 49.06 12.58 1148.58
Oracle with λ = 0.0001 42.75 12.27 992.52 49.20 12.55 1137.76
Oracle with λ = 0.0010 42.83 12.40 988.96 49.21 12.55 1137.07
Oracle with λ = 0.0050 42.85 12.39 988.32 49.24 12.56 1136.22
Oracle with λ = 0.0100 42.89 12.42 987.65 49.27 12.55 1135.51

Figure 7 shows how frequently the oracle asked each feature in each position across test instances. Most
features are chosen fairly uniformly at each position in the question ordering. This indicates that there is no
single best order to ask questions across all households, which is why the dynamic question-ordering process
is so valuable.

Frequency asked at position i

F
ea

tu
re

 d

5 10 15 20 25 30

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Electricity.

Frequency asked at position i

F
ea

tu
re

 d

5 10 15 20 25 30

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Natural gas.

Figure 7: The oracle chose to add features fairly uniformly across test samples, shown here as the frequency
each feature was asked in each potential position of question orders.

13

7 Limitations

Currently, our DQO algorithm assumes that 1) users are able to answer the next question we ask and 2) their
answers are accurate. However, situations could arise where these assumptions do not hold. For example, in
the utility prediction task, a prospective tenant may be interested in getting personalized energy estimates
for a home before visiting—they could still answer occupant-related features. DQO can be easily extended
to this case by offering users a “don’t know” option for answering questions and removing unknown features
from consideration in later iterations. Breaking the second assumption, that user answers are accurate, would
allow people to give estimates for features (e.g., refrigerator size by looking at pictures in the rental listing).
Incorporating this element into DQO would require a way to estimate error associated with user-provided
feature estimates.

Furthermore, we have not yet tested the sequential question-asking and prediction-providing process of
DQO with human users. We hypothesize that giving users estimates from partial information will motivate
them to continue answering questions to receive more accurate personalized predictions.

8 Future Work

Expansions to this work include, in increasing order of generalization, refining feature costs to reflect the
influences of crowdsourcing and context when collecting apartment-related data, generalizing the DQO
framework to other methods for classification rather than regression, and taking a DQO-like approach to
adaptive survey design.

8.1 Incorporating the effects of crowdsourcing and context into the cost model
for personalized energy predictions

Here, we assumed that unit-related features (cost 3-7) were more costly than occupant-related features (cost
1-2), because they might require a user to visit an apartment to assess (e.g., to count the number of windows).
However, once enough people are looking at the same apartment, crowdsourcing could lower the effective
cost for these unit-related features, since one apartment hunter’s result could be shared among all potential
occupants. Unit-level information crowdsourced in this way would likely remain relevant for a fairly long
time, since feature values will change only when the landlord upgrades the property.

Additionally, unit-related features might also be less costly if we know the context in which a prospective
tenant is answering questions. For example, if the user is currently viewing an apartment, it becomes much
less expensive to ask them to gather information related to that unit since they are already on site.

8.2 Generalizing the DQO framework to other techniques

DQO as presented here relies on using kNN to estimate values for unknown features and calculating expected
prediction uncertainty with prediction interval widths to choose the next question to ask. However, we can
use other techniques for estimation of yet-unasked questions and calculations of expected uncertainty. For
example, to do classification instead of regression, we could use distance from the decision boundary as a
measure of certainty for SVM classification (farther away from boundary means a more certain prediction)
or the probability the test point is in a particular class for decision trees, logistic regression, or naive Bayes
classification.

8.3 Broadening the scope of DQO to adaptive survey design

Dynamically ordering questions can also be beneficial to survey design. Falling survey response rates lead
to results that do not represent the full population (Porter, 2004), and response rates are often worse for
online surveys than for mail surveys (Shih & Fan, 2008). However, unlike traditional paper surveys, online
surveys can support adaptive questions, where later questions that are asked depend on responses given
to previous questions. Past work in adaptive questions for online surveys has taken a rule-based, question-
specific approach that means a certain response to a certain question leads to a new set of questions, uniformly
across all respondents (Pitkow & Recker, 1995; Bouamrane, Rector, & Hurrell, 2008). A richer interpretation

14

of adaptive questions would use a dynamic question order, personalized to the individual respondent, based
on their previous answers. Such an approach could increase engagement, and therefore response rate, as well
as the quality of imputations for missing data.

9 Conclusion

Providing personalized energy estimates to prospective tenants with limited, costly information is a chal-
lenge. Our solution uses an established dataset to build cost-effective predictive models and, at test time,
dynamically orders questions for each user. At training time, we use a cost-based forward selection algorithm
to select relevant features from RECS and combine low-cost features that are extractable from rental adver-
tisements with relevant higher-cost features related to occupant behavior and home infrastructure. At test
time, when we want to make a personalized estimate for a new renter-home pair, we present a cost-effective
way to choose questions to ask a user about their habits and a rental unit, based on which feature’s inclusion
would most improve the certainty of our prediction, given the information we already know. Our experiments
show that, for predicting electricity and natural gas consumption, we achieve prediction performance that is
equally accurate, but more certain, than two fixed-order baselines by asking users only 25% of features (30%
of the cost of the full-feature model). This setting, where we know all feature values at training time but
must acquire individual features at cost during test time, shows up in other applications, such as conducting
tests to make a medical diagnosis, giving personalized recommendations, and administering adaptive sur-
veys. Applying DQO to these areas can give people valuable predictions without unduly burdening them for
additional information.

References

Bouamrane, M.-M., Rector, A., & Hurrell, M. (2008). Gathering precise patient medical history with an
ontology-driven adaptive questionnaire. In 21st IEEE International Symposium on Computer-Based
Medical Systems (pp. 539–541).

Cohn, D. A., Ghahramani, Z., & Jordan, M. I. (1996). Active learning with statistical models. Journal of
Artificial Intelligence Research.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Infor-
mation Theory , 13 (1), 21–27.

Davis, J. V., Ha, J., Rossbach, C. J., Ramadan, H. E., & Witchel, E. (2006). Cost-sensitive decision tree
learning for forensic classification. In Machine Learning: ECML 2006 (pp. 622–629). Springer.

Dietz, T., Gardner, G. T., Gilligan, J., Stern, P. C., & Vandenbergh, M. P. (2009). Household actions can
provide a behavioral wedge to rapidly reduce US carbon emissions. In Proceedings of the National
Academy of Sciences (Vol. 106, pp. 18452–18456). National Academy of Sciences.

Douthitt, R. A. (1989). An economic analysis of the demand for residential space heating fuel in Canada.
Energy , 14 (4), 187–197.

Elkan, C. (2001). The foundations of cost-sensitive learning. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (pp. 973–978).

Fuller, W. A. (2009). Measurement error models. John Wiley & Sons.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. The Journal of Machine

Learning Research, 3 , 1157–1182.
Haas, R., & Schipper, L. (1998). Residential energy demand in OECD-countries and the role of irreversible

efficiency improvements. Energy Economics, 20 (4), 421–442.
Harrell, F. E. (2001). Regression modeling strategies. Springer Science & Business Media.
He, H., Daumé III, H., & Eisner, J. (2012). Cost-sensitive dynamic feature selection. In ICML Inferning

Workshop.
Kaza, N. (2010). Understanding the spectrum of residential energy consumption: a quantile regression

approach. Energy Policy , 38 (11), 6574–6585.
Labandeira, X., Labeaga, J. M., & Rodŕıguez, M. (2005). A residential energy demand system for Spain.

MIT Center for Energy and Environmental Policy Research Working Paper(2005-001).

15

Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: current methods of estimation.
Environmental Monitoring and Assessment , 178 (1-4), 135–160.

Pitkow, J. E., & Recker, M. M. (1995). Using the web as a survey tool: Results from the second WWW
user survey. Computer Networks and ISDN Systems, 27 (6), 809–822.

Porter, S. R. (2004). Raising response rates: What works? New Directions for Institutional Research,
2004 (121), 5–21.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning , 1 (1), 81–106.
Saeedi, R., Schimert, B., & Ghasemzadeh, H. (2014). Cost-sensitive feature selection for on-body sen-

sor localization. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication (pp. 833–842).

Schouten, B., Calinescu, M., Luiten, A., et al. (2013). Optimizing quality of response through adaptive
survey designs. Survey Methodology , 39 (1), 29–58.

Seryak, J., & Kissock, K. (2003). Occupancy and behavioral effects on residential energy use. In Proceedings
of the Solar Conference (pp. 717–722).

Shih, T.-H., & Fan, X. (2008). Comparing response rates from web and mail surveys: A meta-analysis. Field
Methods, 20 (3), 249–271.

Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G., & Zha, H. (2013). Learning multiple-question decision trees
for cold-start recommendation. In Proceedings of the Sixth ACM International Conference on Web
Search and Data Mining (pp. 445–454). New York, NY, USA: ACM.

Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: A
review of modeling techniques. Renewable and Sustainable Energy Reviews, 13 (8), 1819–1835.

Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on
Information Theory , 50 (10), 2231–2242.

U.S. Census Bureau . (2013). American housing survey for the United States. Washington, D.C.: U.S.
Government Printing Office.

U.S. Energy Information Administration . (2009). Residential energy consumption survey 2009. www.eia

.gov/consumption/residential/data/2009/.
Van Raaij, W. F., & Verhallen, T. M. (1983). A behavioral model of residential energy use. Journal of

Economic Psychology , 3 (1), 39–63.
Weisberg, S. (2014). Applied linear regression (4th ed.). John Wiley & Sons.

16

www.eia.gov/consumption/residential/data/2009/
www.eia.gov/consumption/residential/data/2009/

	Introduction
	Related work
	Residential energy modeling
	Cost-effective feature selection and ordering
	Training-time feature selection
	Test-time feature ordering

	Problem and approach
	Method
	Training time: cost-aware feature selection
	Test time: cost-effective dynamic question ordering

	Data
	Defining feature costs

	Experimental validation
	Training time: cost-aware feature selection
	Test time: cost-effective dynamic question ordering
	Parameter selection and estimation
	Simulating the question-asking and -answering process with RECS
	Evaluating DQO performance with prediction certainty, error, and cost

	Limitations
	Future Work
	Incorporating the effects of crowdsourcing and context into the cost model for personalized energy predictions
	Generalizing the DQO framework to other techniques
	Broadening the scope of DQO to adaptive survey design

	Conclusion
	References

