
Estimating Heterogeneous Treatment Effects of a
Fractions Tutor

Christoph Dann
Machine Learning Department

Carnegie Mellon University

Data Analysis Project
DAP Committee: Emma Brunskill, René Kizilcec

November 29, 2017

Abstract
In this project, we aim to estimate the effect of different teaching strategies in a tu-
toring system on student learning and how that effect varies across different groups of
students. More specifically, we want to shed light on whether choosing exercise problems
adaptively based on prior student performance is more effective at teaching elementary
school students about fractions than non-adaptive problem selection strategies. To this
end, we analyze data of a recent study performed by Doroudi et al. (2017) and estimate
heterogeneous treatments effects (HTE) using basic Monte-Carlo estimation as well as
3 recently proposed state-of-the-art methods for HTE estimation. While the estimates
suggest that there may be small positive effects in 5th grade students and students of
certain schools, none of the detected effects is statistically significant. This result raises
the question what effect sizes current methods are able to detect for a given number
of samples and shows the need for further extensive experimental comparisons across a
wide range of scenarios.

1 Introduction
In modern E-commerce, personalization is ubiquitous. As customers, we expect shopping
websites and streaming services to recommend to us books and movies we find most interest-
ing based on our previous purchases. Yet, in education, personalization has not fully arrived.
In classrooms and lecture halls, entire cohorts or batches of students receive the exact same
teaching. For many decades, there is the dream of using machines to better teach students
on an individual level and several successful tutoring systems have been implemented over
time. Automated curriculum design is a key component in such systems and an active field
of study for educational researchers. Even when curated teaching content is available, the
question of how to best select the next content for the student next given her prior perfor-
mance is nontrivial. Typically, adaptive content selection strategies are based on student
models that keep track of the student’s learning progress (Corbett and Anderson, 1995, e.g.).
So far, there has only been limited empirical evidence that such adaptive content selection
strategies can teach students better than non-adaptive strategies (Doroudi, 2017). One ex-
ample is a recent study by Doroudi et al. (2017) that did not find a significant improvement
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when teaching elementary school students about fractions with adaptive content selection
compared to non-adaptive content selection.

However, the analysis of Doroudi et al. (2017) only considered the effect of adaptive
content selection on the entire student population. It may be possible that adaptive selection
significantly improves learning for certain groups of students (e.g. only in 5th grade) but not
for others. In this work, we therefore analyze the experimental data by Doroudi et al. (2017)
to estimate effects of content adaptation for subgroups of students.

Effects that vary across the considered population are referred to as heterogeneous treat-
ment effects and estimating such effects is an important task in many scientific fields, includ-
ing political sciences, biology, finance, education, and artificial intelligence. Heterogeneous
treatment effect estimation is not a simple supervised learning problem since it requires
counterfactual reasoning: each student uses the tutoring system either with an adaptive or
nonadaptive content selection strategy. In order to determine the effect of adaptation on
student learning we need to reason about what the student’s performance would have been
if she had been taught with the other strategy.

As an important task in different scientific fields, there are many different approaches
(including different terminologies) to heterogeneous treatment effect estimation (Wager and
Athey, 2017; Taddy et al., 2016; Künzel et al., 2017; Kreif et al., 2012; Grimmer et al.,
2014; Ratkovic and Tingley, 2017; Dudik et al., 2011). For the analysis of this data set, we
leverage three recent algorithms, causal forests (Wager and Athey, 2017), X-learner (Künzel
et al., 2017) and LASSOplus (Ratkovic and Tingley, 2017), as well as simple Monte-Carlo
estimation. We not only compare their point estimates for different subgroups of students but
also different approaches to quantify the uncertainty of these estimates, that is, confidence
intervals constructed around these estimates.

The remainder of this paper is organized as follows: In Section 2, we describe the setup
of the fractions tutor experiment and the resulting data set. Afterwards we formally state
our objective in Section 3 and describe our methodology in Section 4, including a brief
introduction to heterogeneous treatment estimation as well as an overview of the estimators
we use. The results of our analysis are available in Section 5. As we discuss in Section 6,
these results suggest the need for further simulation studies and in the following Section 7,
we provide a first step in that direction. Finally the paper concludes with Section 8.

2 Data Set
We analyze a dataset gathered in an experiment conducted in 2015 (Doroudi et al., 2017). In
total 347 elementary school students, 184 in 4th grade and 163 in 5th grade, used a tutoring
system to learn about the concept of fractions. This experiment was conducted in 3 schools
in the Pittsburgh area.

Conditions: While using the tutor, each student solves a sequence of exercise problems.
The experimental condition specifies the algorithm used to sequence the problems completed
by a student. Each student is assigned uniformly at random to one of 5 conditions:

1. Baseline 1: Students are presented with problems of 2 types (inductive and refinement
problems) in a fixed order selected based on domain knowledge and the known benefit
of spiraling.

2. Baseline 2: Students are presented with a more diverse set of problems than in baseline
1 (beyond inductive and refinement) in fixed order.
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Figure 1: Two example questions of the pre- and posttest.

School 1 School 2 School 3

Grade 4
0 Students

Pre: -
Post: -

162 Students
Pre: 3.81
Post: 4.65

22 Students
Pre: 6.54
Post: 9.20

Grade 5
149 Students
Pre: 4.22
Post: 5.73

0 Students
Pre: -
Post: -

14 Students
Pre: 9.15
Post: 12.22

Table 1: Number of students and their average scores per grade and school.

3. Max-Skill: The tutor choses problems that maximize the number of skills mastered by
the student as predicted by the G-SCOPE algorithm (Hallak et al., 2015).

4. Max-PostTest: The exercise problems are chosen to maximize the posttest score as
predicted by the G-SCOPE student model.

5. BKT-Mastery: The tutor selects problems that are predicted to best help the student
reach mastery by the Bayesian Knowledge Tracing (BKT) (Corbett and Anderson,
1995) student model.

The first two conditions are fixed in the sense that all students in the same condition solve
the same problems in the same order. In contrast, the last 3 conditions adapt to the student
performance, that is, the tutor selects the next problem based on how the student answered
all previous problems.

Pre- and Posttest: Before interacting with the tutoring system, each student takes a
pretest which contains of 16 questions, two of which are shown in Figure 2. The correct
answers are not revealed to the students. After that, each students uses the tutor for 4 class
units and takes a posttest afterwards, which is identical to the pretest. The range of scores
in each test is 0− 16 and Figure 2 shows a histogram of the scores achieved by the students.
In Table 1, the number of students and their average post- and pretest score per school and
grade are shown.

3



0 2 4 6 8 10 12 14 16

Score

0

10

20

30

40

50

60

N
u
m

b
e
r 

o
f 

S
tu

d
e
n
ts

Pretest

Posttest

Figure 2: Histogram of pretest and posttest scores.

Preprocessing: The data was made available to us in anonymized form on an interaction
level. Each entry of the raw data set is a single interaction of a student with the tutoring
system, for example, changing a specific answer choice of a question or submitting an answer.
We processed this data set by filtering out interactions with problem sets other than the pre-
and posttest and students who did not complete both tests. We further computed for each
student and subproblem whether they answered that subproblem correctly. There are 43
subproblems in total in the pretest (and posttest) clustered in 16 problems. The total score
per test is the sum of the score per problem which is the fraction of subproblems answered
correctly in that problem. The result of this preprocessing is a data set of 347 students, each
with an anonymous student ID, a grade ∈ {4, 5}, a school identifier, a pretest score ∈ [0, 16],
a posttest score ∈ [0, 16] as well as the condition the student was assigned to ∈ {1, 2, 3, 4, 5}.

3 Problem Statement
Using the data set described above, we aim to answer the following question: Do adaptive
problem selection strategies work better for teaching fractions than non-adaptive strategies and
does a potential benefit / disadvantage (treatment effect) of adaptation vary across different
groups of students?

Due to the small data set size we anticipate limited statistical power, that is, estimated
differences may not be statistically significant. We are therefore also interested in comparing
different estimators and their statistical power beyond this specific data set to gain insights
into when we are able to use them to detect such treatment effects reliably.

4 Methodology
The question of interest stated in the previous section essentially requires to reason about
differences in outcomes between different interventions. Since we aim to do that for different
groups of the student population, this task can be posed as a problem of estimating het-
erogeneous treatment effects. Heterogeneous treatment effect estimation is an active field of
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research with contributions from various disciplines including Statistics, Econometrics, Social
Sciences, Bio-Statistics and Artificial Intelligence (Shiraito, 2016; Ratkovic and Tingley, 2017;
Athey and Imbens, 2016; Grimmer et al., 2014; Kreif et al., 2012; Künzel et al., 2017; Zhou
and Brunskill, 2016; Taddy et al., 2016; Imai and Strauss, 2011; Imai and Ratkovic, 2013;
Wager and Athey, 2017). In the following, we formalize the setting using the terminology
common in the heterogeneous treatment effects literature and subsequently discuss different
approaches to estimating such effects.

4.1 Background and Setting: Heterogeneous Treatment Effects
Each sample has covariates or features X ∈ X where X ⊆ Rm is the feature space and tyically
high-dimensional. In our setting, each student is a sample and the features are school, grade
as well as pretest score.

The space of all conditions is denoted by C and can in the simplest case just contain two
elements, treatment and control. Yet, multiple different treatments are possible. In our case
C contains for example 5 elements:

C = {Baseline 1, Baseline 2, Max-Skill, Max-PostTest, BKT-Mastery} . (1)

Sometimes, treatments might even be parameterized by a continuous parameter which results
in |C| = ∞. For our analysis we consider a simplified setting for increased statistical power
where we only use a binary condition space C′ by mapping the fixed order strategies Baseline
1 and Baseline 2 to a control condition and the adaptive strategies Max-Skill, Max-PostTest
and BKT-Mastery to the treatment condition.

Using the potential outcomes framework (Rubin, 1974; Holland, 1986; Sekhon, 2008),
we define for each condition c ∈ C the counterfactual variables Y (c) ∈ R which denote the
outcome of interest in a hypothetical scenario where the sample was assigned to condition
c. In our case, the outcome of interest is the difference of posttest and pretest score. This
difference is a (noisy) quantifier of the learning gains of the student while using the tutor
and can take values in [−16, 16].

It is important to note that the potential outcomes are in general not observed. Only
the outcome associated to the condition the sample is actually assigned to is observed. Let
W ∈ C denote the condition of the sample. Then the only outcome observed is the observed
outcome

Y =
∑
c∈C

Y (c) 1I{W = c}, (2)

where 1I{p} denotes the indicator function that takes value 1 if and only if predicate p is
satisfied and value 0 otherwise.

To determine the effectiveness of condition c compared to a baseline condition c0 ∈ C, we
look at the average treatment effect (ATE)

ATEc = E[Y (c) − Y (c0)]. (3)

This quantity is an average of the differences in outcome over the entire population. In order
to make statements about the effectiveness for subgroups of the population, we can estimate
the conditional average treatment effect (CATE) τc

τc(A) = E[Y (c) − Y (c0)|X ∈ A] (4)
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where A ⊆ X is a subset of features.
The goal of heterogeneous treatment effect estimation is typically to estimate the CATE

for some or all subsets A given a dataset ((Xi,Wi, Yi))i=1,...,n of features, condition variable
and observed outcome where each triple is independently drawn from the sample distribution
as (X,W, Y ). Besides simple point-estimates, a quantification of uncertainty of the estimate
such as confidence intervals are desired.

Note that even if we are just interested in singletons A = {x}, that is, the conditional
average treatment effect for a single feature combination, this cannot be framed as a simple
supervised learning problem. Only at most one component of the treatment effect Y (c)−Y (c0)

is observed per sample and the other one is missing. So-called counterfactual reasoning is
therefore required.

One way to estimate the CATE is to first estimate the response function rc, which is the
expected outcome conditioned on the features

rc(x) = E[Y (c)|X = x] (5)

and then use τ̂({x}) = r̂c(x)− r̂c0(x) as an estimator for the conditional average treatment
effect for features x.

Note that since the assignment to different conditions was independently and uniformly
at random in the fractions experiment, we can identify causal relationships by heterogeneous
treatment effect estimation.

4.2 CATE-Estimation using Monte-Carlo
As a simple approach to heterogeneous treatment estimation, we estimate the conditional
average treatment effect for a set A and condition c as the difference of the Monte-Carlo
estimates R̂c,A, R̂c0,A of the outcomes Rc,A =

∫
A rc(x)dx and Rc0,A =

∫
A rc0(x)dx, that is,

τ̂MC
c (A) = R̂c,A − R̂c0,A =

1

Nc(A)

n∑
i=1

Yi 1I{Xi ∈ A,Wi = c} (6)

− 1

Nc0(A)

n∑
i=1

Yi 1I{Xi ∈ A,Wi = c0}, (7)

where Nc(A) =
∑n

i=1 1I{Xi ∈ A,Wi = c} is the number of samples with features in A and
assigned to condition c.

Confidence Intervals. We explore three different strategies for providing confidence in-
tervals for this Monte-Carlo estimator. The first is based on Azuma-Hoeffding concentration
bounds applied to R̂c,A and R̂c0,A and is given by [τ̂MC

c (A)−whoeff(A), τ̂MC
c (A)+whoeff(A)]

where

whoeff(A) = 16

√
ln(4/δ)

2Nc0(A)
+ 16

√
ln(4/δ)

2Nc(A)
. (8)

This confidence interval is exact, that is, τc(A) lies in that interval with probability at least
1 − δ. Yet, we expect it to be extremely conservative. One reason is that these intervals
are derived using only the fact that scores are in [0, 16] and therefore the treatment effect in
[−16, 16]. However, the actual distribution of effects is likely to be concentrated close to a
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small value. We therefore explore alternative exact confidence bounds using recent empirical
Bernstein bounds (Maurer and Pontil, 2009) that take the empirical variance V̂c(A) and
V̂c0(A) into account. The resulting interval is [τ̂MC

c (A) − wbern(A), τ̂MC
c (A) + wbern(A)]

where

wbern(A) =

√
2V̂c(A) ln(6/δ)

Nc(A)
+

√
2V̂c0(A) ln(6/δ)

Nc0(A)
(9)

+ 16
7 ln(6/δ)

3

(
1

(Nc(A)− 1)
+

1

(Nc0(A)− 1)

)
(10)

and the empirical variances are computed as usual as

V̂c(A) =
1

Nc(A)− 1

n∑
i=1

(Yi 1I{Xi ∈ A,Wi = c} − τ̂c(A)MC)2. (11)

The benefit is that the large coefficient 16 is replaced by the empirical variances which we
expect to be much smaller and therefore the dominant term in Equation (9) is be small.
Once the number of samples is large enough the non-dominant term also becomes small and
wbern < whoeff.

Finally, we consider confidence intervals based on the Bootstrap using a Normal ap-
proximation (Wasserman, 2003, pg. 110). These intervals are much tighter but are only
asymptotically correct. That means they only hold approximately for sufficiently large sam-
ple sizes. Note that the Monte-Carlo estimator is only defined if Nc(A) > 0 and Nc0(A) > 0.
All intervals are combined by Bonferroni correction to account for multiple testing.

4.3 CATE Estimation using Causal Forests
Recently, Wager and Athey (2017) proposed to estimate the CATE in the case of a single
treatment (|C| = 2) by using modified random forests, which are an ensemble of individual
regression trees. Their main contributions is to show that the estimates produced by the
random forest are pointwise asymptotically unbiased and Gaussian which allows constructing
approximate pointwise confidence intervals for the CATE.

For this to hold, the trees need to be grown sufficiently deep and, at the same time, there
need to be enough samples in each leaf. Further the trees need to satisfy a condition called
honesty which decouples the structure of the trees from the estimates in each individual leaf.
One way to achieve honesty is to generate the tree structure using the treatment variablesWi

as targets and not the outcomes Yi. However, in completely randomized experiments where
Wi is drawn independently at random, this essentially corresponds to a random tree structure
independent of anything else which is not very helpful to estimate the CATE. An alternative
is to partition the available data set and use one part (structure samples) to generate the
tree structure and the other part (leaf samples) to generate the estimates at the leaf. We
follow this approach called Double Sample Trees.

At a leaf, the CATE is estimated using the Monte-Carlo estimator from Equation (7)
applied to only the leaf samples that end up in that specific leaf. The criterion for generating
the tree structure is similar to standard regression trees: node splits are chosen to maximize
the variance in the CATE predictions on the structure samples while ensuring that there are
at least k leaf samples for each condition in both child nodes.
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Average of Sample Estimates. The result of this random forest procedure is an estimate
of the CATE for any individual feature combination, that is, τ̂CF({x}) for all x ∈ X .1 To
obtain an estimate for non-singleton sets A we average all estimates on the respective samples

τ̂CF(A) = 1

N(A)

n∑
i=1

τ̂CF({Xi}) 1I{Xi ∈ A}, (12)

where N(A) is the total number of samples with features in A.

Confidence Intervals. We follow the suggestion of Wager and Athey (2017) and use
the infinitesimal jackknife estimate of the variance of causal forest predictions for individual
feature combinations. For non-singleton feature setsA we bound the variance of the estimator
in Equation (12) as the square of the average of the individual standard deviations. This
bound is tight when the estimates for different feature combinations are highly correlated
which is likely to be the case. We leverage these variance estimates and the asymptotic
normality to construct approximate confidence intervals for the causal forest estimates.

As an alternative, we use the Bootstrap on τ̂CF(A), that is the causal forest and averaging
on sample estimates, to construct approximate confidence intervals and combine them using
Bonferroni correction.

4.4 CATE Estimation using X-Learner
Künzel et al. (2017) analyze several meta-learner approaches that estimate the CATE for the
binary-condition case (i.e., C = {0, 1}) by using a base regressor such as regression forests as a
black box. The procedure described at the end of Section 4.1 of first estimating the responses
r1 and r0 individually from samples in the treatment or control condition respectively and
then using the difference as an estimate is analyzed as T-learner. An alternative called
S-learner is to estimate both responses jointly from all samples and include the treatment
variable W as an additional feature and again use the difference in response estimates as
CATE estimator.

Künzel et al. (2017) also propose an new alternative meta-learning method named X-
learner and show that it performs favorable in cases where there are more samples in one
condition than in the other and the CATE has a simpler functional form compared to the
individual responses. They for example prove that when the CATE is linear and responses
are only Lipschitz continuous, then X-learner still retains the faster convergence rate of
parametric regression. The X-learner meta-algorithm works as follows:

1. Similar to the T-learner, estimate the responses for treatment and control separately
from the respective samples. We denote the estimates by r̂1 and r̂0.

2. Impute the treatment effects of samples in treatment (resp. control) using the response
estimate from the control condition (resp. treatment) as

D̂
(0)
i =r̂1(Xi)− Yi and (13)

D̂
(1)
i =Yi − r̂0(Xi) (14)

1Since causal forests assume a single treatment, we omit the index c of the condition for the estimator
here.
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3. Estimate CATE for singletons as τ̂1(x) using the base regressor on samples in the
treatment condition with targets from Equation (14). Similar create CATE estimate
τ̂0(x) from control samples with imputed target from Equation (13).

4. Define X-Learner estimate as convex combination of τ̂0 and τ̂1 with weights g(x) ∈ [0, 1]

τ̂XL(x) = τ̂1(x)g(x) + τ̂0(x)(1− g(x)). (15)

The benefit of the data imputation approach of the X-learner is that estimation errors in
the responses can cancel to a certain extent. Instead of using a simple average, g(x) = 1

2 , it
can therefore be beneficial to choose the weighting function as the probability of treatment,
since that helps to better balance the estimation errors. In our analysis, we pick regression
forests consisting of honest trees as base learners and the treatment probability as (constant)
weighting function. In comparison to causal forests which use honest trees to directly esti-
mate the CATE from partial regression targets, the X-learner approach employed by us uses
multiple regression forests to first impute the regression targets and then estimate the actual
CATE from imputed data.

The output of the X-learner is a CATE-estimate for all individual feature combinations
x. Identical to the methodology for causal forests in Equation (12), we average estimates of
the CATE on sample features to generate an estimate τ̂XL(A) of the CATE for non-singleton
feature sets A.

Confidence Intervals. Since there is no direct uncertainty result for the X-learner esti-
mate, we use the Bootstrap on τ̂XL(A) with normality assumption to generate approximate
confidence intervals and Bonferroni correction to make them jointly valid.

4.5 Feature Detection With LASSOplus
The approaches discussed above directly aim to estimate the CATE. The LASSOplus ap-
proach recently proposed by Ratkovic and Tingley (2017) is different: it uses a sparse linear
model for the joint response function across all conditions to identify features and treatment
variables that significantly contribute to the responses.

To illustrate this approach, assume we have a small finite number k of different treatments,
that is C = {0, 1, 2, . . . , k}. LASSOplus aims to find sparse parameters θ, θ1, . . . , θk ∈ Rm so
that

Yi ≈ Xiθ +
k∑

j=1

1I{Wi = j}Xiθ
k (16)

for all samples i = 1, . . . , n. 2 If vector θj has nonzero entries then this corresponds to a
significant treatment effect for treatment j. In fact, for a feature set A,∫

A
XθjdX (17)

can be interpreted as an estimate of the CATE for treatment j. Finding parameter vec-
tors θ, θ1, . . . , θk can be framed as fitting a joint parameter vector θ̃ in a flat linear model

2Preprocessing of features Xi (and outcomes Yi) such as normalization, adding an offset dimension and
potentially adding products between features as new features, makes the linear model assumption more
appropriate.

9



using an augmented feature space. LASSOplus is a Bayesian approach and estimates θ̃ by
first computing a posterior over parameters using a generative probabilistic model and then
thresholding the parameters with a specific threshold criterion. For the sake of conciseness,
we omit details of this model here, but only remark that it is an extension of the original
Bayesian interpretation of the LASSO method but with less shrinkage of nonzero coefficients.
LASSOplus reports a component of θ̃ to be significant if the median of the thresholded pa-
rameter posterior is nonzero.

Confidence Intervals. Ratkovic and Tingley (2017) also propose approximate confidence
intervals for their LASSOplus estimates based on asymptotic approximations and the Delta-
method. These intervals are approximately valid for all detected effects jointly due to Bon-
ferroni correction.

4.6 Implementations and Hyperparameters
We conducted the analysis and preprocessing of the data set using the Julia language. We
also implemented the Monte-Carlo estimators as well as the Bootstrapping procedure for
confidence intervals in Julia. For causal forests, we used the implementation available in
the grf R-package available at https://github.com/swager/grf and for X-learner
the R-package available at https://github.com/soerenkuenzel/hte. The LASSO-
plus estimator implementation in the R-package sparsereg available at https://cran.
r-project.org/web/packages/sparsereg/index.html was used. All three pack-
ages are the implementations recommended by the authors of each method.

Some methods have hyperparameters that for example control the number of trees or
their size in random forest estimators. Tuning them is nontrivial in heterogeneous treatment
effect estimation since it is not a supervised learning problem and therefore typical methods
of model selection such as cross-validation are not readily applicable. In addition, since our
goal is to estimate effects in subgroups, the effective number of samples per condition per
subgroup is only on the order of a few dozen. That makes any tuning based on data splitting
likely to run into problems of data sparsity. We therefore rely on the default parameters of
each method which have been picked to work well on a small range of simulated problems.

5 Results
We applied the four methods presented in Section 4 to the data set described in Section 2 to
estimate heterogeneous treatment effects and provide a summary of the result in this section.

Figure 3 shows the estimates of the different methods for individual subgroups of students.
The estimates in this plot are for treatment effects of adaptive problem strategies (3 conditions
aggregated) compared to fixed strategies (2 conditions aggregated). We report estimates for
7 groups of students in total. The first group is all students, i.e., the average treatment effect
E[Y (adaptive)−Y (fixed)]. The remaining groups filter students based on a single criterion, e.g.,
being in 4th grade, E[Y (adaptive)−Y (fixed)|Xgrade = 4], but aggregate among all other features.
We report the treatment effects for both grades, all 3 schools and the final group consists of
all students with a pretest score higher than the median pretest score of the entire data set.
For each subgroup, estimates from all four methods, Monte Carlo (MC), X-learner, causal
forests and LASSOplus, are shown. For Monte-Carlo, all three types of confidence intervals
are displayed, Hoeffding based (HoeffCI), empirical Bernstein based (BernCI) and Bootstrap
based (BootCI). For causal forests, we include confidence intervals from the infinitesimal
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Overall avg 4. Grade 5. Grade School 1 School 2 School 3 Good Pretest
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Estimated Effects

MC HoeffCI

MC BernCI

MC BootCI

X-Learner

Causal Forest IJCI

Causal Forest BootCI

LASSOplus

Figure 3: Estimated conditional average treatment effects of adaptive strategies compared
to fixed strategies. The pink bars of LASSOplus are not visible as it estimates a treatment
effects of 0 for all subgroups.

MC HoeffCI MC BernCI MC BootCI CF IJCI CF BootCI X-learner LASSOplus
14.31 22.96 1.98 2.97 1.54 1.34 2.03

Table 2: Average width of confidence intervals of treatment effect estimates shown in Figure 3

Jackknife variance estimate (IJCI) and the Bootstrap variance estimate (BootCI). The error
bars shown indicate the 95% confidence intervals that hold jointly for all subgroups per
estimator.3 Table 2 contains the average width of the confidence intervals across all groups
for each approach in Figure 3.

In Figure 4, we take a closer look at how the estimates of the treatment effect of adaptive
strategies vary with pretest score. In particular, this plot compares the point estimates of
the two random-forest based methods, causal forests and x-learner. The individual dots and
crosses show the estimates for each student in the data set. Crosses correspond to students in
the 4th grade while students in the 5th grade are shown as dots. The features in the data set
are not independent, for example 4th graders tend to have lower pretest score. The variation
along the horizontal axis might therefore come from a variation in other features and not
necessarily from a change in the pretest score. To isolate the impact of the pretest score on
the treatment effect estimates, we evaluated the estimates on samples that have a specific
pretest score but the marginal distribution of all other features is identical to the marginal
of the entire data set. The resulting estimates are shown as solid lines.

In Figure 5 we show the treatment effect estimates for the exact same settings as in
Figure 3 except that we ignored the Max-Skill and Max-PostTest conditions. We therefore
show here estimates of the conditional average treatment effects of the BKT-Mastery strategy
compared to a mixture of the two fixed baseline conditions. These estimates are based on
205 students in total. We chose to closer examine the effects of the BKT-Mastery strategy
as we a-priori expect it to perform the best compared to all other conditions.

3Multiple testing across estimators is not accounted for since we want to also gain insights in the capability
of an individual estimator.
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Figure 4: Estimated treatment effect by causal forests and X-learner. Dots are estimates on
the students in the data set and solid lines are average estimates for a fixed pre-score but all
other features have the same marginal distribution as in the observed data set.

6 Discussion
Point estimates. The point estimates in Figure 3 indicate that there may be a small
positive effect of adaptive problem selection strategies on student learning. This effect seems
to be higher for 5th grade students and not present or even negative for 4th grade students.
Similarly, results suggest a positive effect for School 1 and School 3, while the effect may be
negative for School 2. These two findings are not orthogonal though, because in School 2
only 4th grade students participated and in School 1 only 5th graders. It is therefore unclear
whether such a heterogeneous effect could be attributed to the school or the grade or both.
The results also indicate that whether a student performs better or worse than median on
the pretest has hardly any impact on the effect of adaptive strategies. Yet, Figure 4 suggests
that there may be heterogeneity in the treatment effect of adaptive strategies on a finer level:
For a pretest score in the range 3-4, both causal forests and X-learner estimate a positive
effect of ≈ 0.4 and a smaller effect for higher pretest scorees.

In Figure 5, the point estimates of the effects of the adaptive BKT-Mastery strategy
compared to the two non-adaptive baselines indicate that BKT-Mastery problem selection
has a larger positive effect overall and especially for students in 5th grade and School 1.

Confidence Intervals. All above point estimate interpretations have to be taken with
extreme caution for two reasons. First, the absolute magnitude of the estimated effects is
still small with an average treatment effect of 0.2 for all adaptive strategies and 0.3 for the
BKT-Mastery strategy relative to the range of scores 0− 16. Second and more importantly,
(almost) all of the estimated confidence intervals contain 0. Hence, the estimated effects are
not statistically significant.

The only confidence interval that does not contain 0 is the causal forest based interval
using the infinitesimal jackknife of the effect of the BKT-Mastery strategy in School 1 (fourth
column, Figure 5). Yet, the confidence interval of the same estimator using Bootstrap is

12



Overall avg 4. Grade 5. Grade School 1 School 2 School 3 Good Pretest
1.5

1.0

0.5

0.0

0.5

1.0

1.5
Estimated Effects of BKT Mastery vs. Fixed Strategies

MC HoeffCI

MC BernCI

MC BootCI

X-Learner

Causal Forest IJCI

Causal Forest BootCI

LASSOplus

Figure 5: Estimated average treatment effects in the Fractions data of the BKT Mastery
strategy compared to fixed strategies. The pink bars of LASSOplus are not visible as it
estimates a treatment effects of 0 for all subgroups.

larger and contain 0 and so do all other confidence intervals for this effect. This gives raise to
question the validity of this tighter interval. A failure might occur because of the asymptotic
approximations used to construct this interval not being accurate enough or simply because
of the statistical nature of confidence intervals. In addition, the causal forest estimator might
be prone to over-fitting. One indication for that is that the causal forest estimates of the
treatment effect of adaptive strategies shown in Figure 4 (solid red line) have larger variation
and non-smoothness than we a-priori expected. In comparison, the estimates of X-learner
show less variation which is more plausible. Since we have refrained from hyper-parameter
tuning due to the small data set size (see Section 4.6), the default parameters chosen for
causal forests may be too aggressive here and do not provide enough regularization.

Comparison of Estimators. As expected, Monte-Carlo estimation is generally the es-
timator with highest variance and lowest bias and therefore most likely to over-fit. It is
followed by causal forests, X-learner and finally LASSOplus which is very conservative. With
its sparsity prior and additional thresholding operation LASSOplus produces sparse estimates
which causes this conservative behavior. As mentioned above, part of the difference between
causal forest and X-learner estimators can be attributed to different hyperparameters of the
underlying trees. Yet, in a separate small parameter study, we observed X-learner to be in
general more conservative than causal forests. This is likely due to the 2-stage estimation
process which makes the regression targets for the second stage of X-learner less noisy. Com-
paring the average width of all confidence intervals based on Bootstrap in Table 2, we observe
that the Monte-Carlo estimator has higher variance than causal forests which have higher
variance than X-learner. This is in line with the our conclusions about bias and variance of
these estimators based on the point estimates.

The results in Table 2 further suggest that Bootstrap produces the tightest confidence
intervals. The infinitesimal jackknife confidence intervals of causal forests are on average
twice as wide as the Bootstrap CIs which in part can be attributed to the upper bound
on the variance of the sample-averaged estimate (see Section 4.3). As expected, the exact
confidence intervals based Hoeffding and empirical Bernstein bounds are much wider than
the approximate Bootstrap confidence intervals of the Monte-Carlo estimate. While the
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empirical Bernstein CIs are sometimes smaller, they are on average wider than Hoeffding
CIs, due to the small sample size and therefore significant size of the non-dominant term in
the empirical Bernstein CIs (see Equation (10)).

Given the limited data set size, it is challenging to determine whether the estimated
effects are actually statistical noise or whether the used estimators are just lacking statistical
power to detect such small effects. Further, the lack of ground truth hinders quantitative
comparisons of the estimators and their accuracy. These issues motivate the need for a more
extensive evaluation and comparison of these recent estimators in a controlled simulated
setting with ground truth effect sizes available.

7 Simulation Study
As discussed in the previous section, the results on the fractions data set do not allow to
gain insights into the statistical power of the different estimators. We therefore conducted
a small simulation study that compares the capability of the different estimators to detect
heterogeneous effects with statistical significance. Since evaluation on simulation data was not
the main focus of this data analysis project, we only present a brief description and overview
of the results. This should be considered only as a first step toward a more extensive and
systematic comparison.

We simulate students taking a MOOC and observe a score in [0, 1] that indicates the
learning gain of the student. Students are independently at random assigned to a treatment
condition with probability 0.3. There are in total 27 features describing each student which
include personal attributes (such as age, gender, employment status, education level, edu-
cation level of parents, human development index (HDI), institution, race, English fluency)
as well as course interaction attributes (such as hours spent, course ID, intent assessment).
These features are drawn independently from simple but reasonable distributions (details see
source code in Appendix A) The observed score consists of 3 additive components:

• Explainable variation of magnitude ≈ 3% modeled as a sigmoid function applied to
normalized features,

• Independent Gaussian noise with certain standard deviation (noise level),

• Treatment effect: For students with HDI below a certain threshold, there is a constant
treatment effect of certain magnitude (effect size).

We generate data for different effect sizes (2%, 5%, 10%), noise levels (1%, 5%, 10%) and
logarithmically increasing data set sizes (316, 1000, 3162, 10000, 31622, 100000). We tested
all estimators on the true treatment effect (effect for students with low HDI vs. effect for
students with high HDI) as well as 18 other subgroups that show no heterogeneity in the
treatment effect. All confidence intervals are calibrated on a 95% level jointly across these
subgroups.

We found that none of the estimators falsely detected a non-existing heterogeneous treat-
ment effect. That indicates that all confidence intervals are well-calibrated or conservative.
In Table 3 we show for each combination of effect size and noise level the smallest number of
samples for which each method was able to detect the true treatment effect with statistical
significance. For Monte-Carlo, causal forest and X-learner, only results based on Bootstrap
confidence intervals are shown as the alternatives were more conservative. We find that for
small effect sizes Monte-Carlo and LASSOplus perform similarly and require less samples
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Effect Size 2% 5% 10%
Noise Level 1% 5% 10 % 1% 5% 10 % 1% 5% 10 %

Monte-Carlo 0.3k 3.2k 10.0k 0.3k 1.0k 1.0k 0.3k 0.3k 1.0k
Causal Forest 1.0k 10.0k 31.6k 0.3k 3.2k 3.2k 0.3k 0.3k 1.0k

X-learner 1.0k 10.0k 31.6k 0.3k 3.2k 3.2k 0.3k 1.0k 1.0k
LASSOplus 0.3k 3.2k 100.0k 0.3k 1.0k 1.0k 0.3k 0.3k 0.3k

Table 3: Number of samples required to detect heterogeneous effect

than causal forests and X-learner. For large effect sizes and noise levels, LASSOplus is better
than the alternatives but requires more samples than all other methods for small effect sizes
and high noise level. Interestingly, Monte-Carlo estimation performs very well compared to
more advanced methods. Even though there was a small imbalance between the sample sizes
of the treatment and control condition and the CATE had a simpler functional form than
the responses, X-learner did not show any performance gains. Overall the estimators are
generally able to detect the treatment effect reliably with a reasonable number of samples.
However, this scenario is almost ideal as there is no model misspecification for any of the
approaches and the signal to noise ratio is higher than we would expect in some applications.

8 Conclusion
In this project, we have analyzed a dataset from an education experiment in which students
were taught about fractions using adaptive or non-adaptive content selection strategies. We
have compared three different estimators against Monte-Carlo estimation for heterogeneous
treatment effects. While the point estimates suggest that adaptive content selection has a
positive effect on learning for students in 5th grade as well as students in 2 out of the 3
schools, none of the estimated effects are detected as statistically significant.

This raises the question of how much data is necessary for the estimators to be able to
reliably detect treatment effects that vary across the population. While there are small sim-
ulation studies in the articles that propose the recent estimators, these experiments typically
do not compare against all other estimators, are on small toy-problems or are designed to
specifically show the benefits of a single estimator. That motivates the need for a more com-
prehensive comparison of all available estimators, including the recent methods we evaluated,
on an extensive set of simulated benchmarks that are motivated by real world applications.

We have taken a first step toward such a comparison and provided a brief summary of
our findings in Section 7. In these experiments, Monte-Carlo estimation performed overall
the best. While this simple baseline has its limitations – especially when it comes to multiple
comparisons (unlike e.g. LASSOplus) – this demonstrates the need to identify scenarios
in which practitioners should choose other more advanced algorithms. Further systematic
experimental comparisons can hopefully shed light on this question and produce actionable
guidelines for practitioners.
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A Details on Simualtion Study
To provide all necessary details to reproduce the data used in the simulation data, we attach
the Julia source code in the following.

Listing 1: Source code for generating simulation data
using DataFrames
using DataFramesMeta
using Distributions

function simulate_students(N = 1000, ptreat = 0.5, stratified = true)

N = Int(N)
data = DataFrame(

institution = rand(["School1", "School2", "School3"], N),
course = rand(1:35, N),
intent_lecture = rand(1:4, N),
intent_assess = sample(1:4, weights([30, 10, 10, 50]), N),
hours = rand(Poisson(6.), N),
crs_finish = rand(Poisson(1.5), N),
goal_setting = rand(1:5, N),
fam = rand(1:5, N),
sex = rand(1:3, N),
yob = rand(1950:2000, N),
empstatus = rand(1:5, N),
teach = rand([0, 1, 13], N),
school = rand(0:1, N),
educ = sample(1:10, weights([.05, .05, 0.05, 0.05, 0.05, 0.05, 0.4, 0.1, 0.1, 0.1]), N),
educ_parents = rand(1:10, N),
fluent = rand(1:5, N),
pob = rand(vcat(0:193, 580, 1357), N),
threat_country = rand(1:5, N),
us_ethnicity = rand(1:3, N),
us_race_1 = rand(0:1, N), us_race_2 = rand(0:1, N), us_race_3 = rand(0:1, N),
us_race_4 = rand(0:1, N), us_race_5 = rand(0:1, N), us_race_6 = rand(0:1, N),
school_ftpt = rand(0:1, N),
school_online = rand(1:4, N),
school_lev = rand(1:7, N),
);
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if stratified
data = @transform(data, strata_intent_assess= Int.(:intent_assess .> 2),

strata_hours= Int.(:hours .> 5),
strata_crs_finish=(:crs_finish .> 3) + (:crs_finish .> 0),
strata_educ=2*(:educ .< 4) + (:educ .== 4));

data[:strata] = @with(data, string.(:strata_intent_assess,
:strata_hours, :strata_crs_finish, :strata_educ))

data[:affirm] = zeros(Bool, length(data[:strata]))
for s in unique(data[:strata])

fil = data[:strata] .== s
n = sum(fil)
ntreat = (ptreat * n + (rand() <= ptreat - floor(ptreat * n)/ n))
data[fil, :affirm] =shuffle(collect(1:n) .<= ntreat)

end
else

data[:affirm] = rand(N) .>= ptreat
end

data[:HDI] = rand(30:98, N)./ 100.
data[:highHDI] = data[:HDI] .> 0.7
function cutHDI(x)

if x < 0.55
1 #"low"

elseif x < .7
2 #"medium"

elseif x < .8
3 #"high"

else
4 #"v.high"

end
end
data[:HDI4] = cutHDI.(data[:HDI])
spaced = x -> x in 1:5
data = @transform(data,

is_fluent = :fluent .== 5,
gender_female = :sex .== 2,
gender_other = :sex .== 3,
course_selfpaced = spaced.(:course),
us_majority = ((:us_race_1 .== 1) .| (:us_race_4 .== 1)) .& (:us_ethnicity .== 1),
age = 2017 - :yob,

educ_phd = :educ .== 9,
educ_ma_prof = (:educ .== 7) .| (:educ .== 8),
educ_ba = :educ .== 6,
educ_some_he = (:educ .== 4) .| (:educ .== 5),
more_educ_than_parents = :educ .> :educ_parents,
is_teacher = :teach .== 1,
is_employed = :empstatus .== 1,
is_unemployed = :empstatus .== 2,
is_ft_student = :empstatus .== 3,
is_pt_student = (:school .== 1) .& (:school_ftpt .== 0),
is_blended = (:school .== 1) .& (:school_online .> 2),
is_hs_student = (:school .== 1) .& (:school_lev .>= 1) .& (:school_lev .<= 3),
is_college_student = (:school .== 1) .& (:school_lev .>= 4) .& (:school_lev .<= 6),
born_in_US = (:pob .== 187)

)
data

end

function treatment_effect(data, eff_affirm = .05, eff_educp = 0.)
eff_affirm .* (1 - data[:highHDI]) + # affirm effect in Low HDI
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eff_educp .* max.(0., data[:educ] - data[:educ_parents])
end
function simulate_outcomes(data, baseline = .1,

eff_affirm = .05,
eff_educp = 0.,
error_sd = 0.1,
expl_sd = 0.02, score=true)

N = size(data, 1)
# Compute outcomes
X = zeros(N, 6)
r = [:intent_assess, :hours, :crs_finish, :educ, :course, :institution]
for i=1:(length(r)-1)

X[:,i] = data[r[i]]
end
for i=1:N

X[i, end] = data[i, :institution] == "School1" ? 1 :
(data[i, :institution] == "School2" ? 2 : 3)

end
X = X .- mean(X, 1)
X = X ./ std(X, 1)
sig = vec(1. ./ (1. + exp.(-mean(X, 2))))

data[:y_prob] = max.(0., min.(1., baseline +
sig / std(sig) * expl_sd + # baseline plus covariate contribution
treatment_effect(data, eff_affirm, eff_educp) .* data[:affirm] +
randn(N) * error_sd))

data[:y] = rand(N) .<= data[:y_prob]

data[:score] = round.(Int64, 100. * data[:y_prob])

features = [Symbol(x) for x in ["intent_lecture", "intent_assess", "hours", "crs_finish",
"goal_setting", "fam", "educ_parents", "age", "gender_female", "gender_other",
"educ_phd", "educ_ma_prof", "educ_ba", "educ_some_he", "more_educ_than_parents",
"is_teacher", "is_employed", "is_unemployed", "is_ft_student", "is_pt_student",
"is_college_student","is_hs_student","is_blended", "fluent", "threat_country",
"HDI4", "born_in_US"]]

Xdf = data[features]
W = data[:affirm]
y = if score

data[:score]
else

data[:y]
end

Xdf,W,y
end

function simulate_data(N = 1000; ptreat = 0.5, stratified = true, baseline = .1,
eff_affirm = .05,
eff_educp = 0.,
error_sd = 0.1, expl_sd = 0.02, score=false)

data = simulate_students(N, ptreat, stratified)
te = treatment_effect(data, eff_affirm, eff_educp)
X, W, y = simulate_outcomes(data, baseline, eff_affirm, eff_educp, error_sd, expl_sd, score)
return X, te

end

function conditionings(X)
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N = length(X[:gender_female])
nocond = X[:gender_female] .>= 0
female = X[:gender_female] .> 0
employed = X[:is_employed] .> 0
unemployed = X[:is_unemployed] .> 0
ftstudent = X[:is_ft_student] .> 0
fluency = X[:fluent] .> 2
more_educ_than_parents = X[:more_educ_than_parents] .> 0
hdi4low = X[:HDI4] .== 1
hdi4lowmed = (X[:HDI4] .== 1) .| (X[:HDI4] .== 2)
hdi4lowmedhigh = (X[:HDI4] .== 1) .| (X[:HDI4] .== 2).| (X[:HDI4] .== 3)
tests = [("Overall avg", nocond),

("Low HDI", hdi4low),
("Low-Medium HDI", hdi4lowmed),
("Low-High HDI", hdi4lowmedhigh),
("Better educated than parents", more_educ_than_parents),
("Female", female),
("Reasonably fluent in English", fluency)]

append!(tests,[("Not $cl", .!con) for (cl, con) in tests[2:end]])
return [(l, collect(1:N)[t]) for (l,t) in tests]

end

function cate_groundtruth(N = 1000; ptreat = 0.5, stratified = true, baseline = .1,
eff_affirm = .05, eff_educp = 0., error_sd = 0.1, expl_sd = 0.02, score=false)

data = simulate_students(N, ptreat, stratified)
te = treatment_effect(data, eff_affirm, eff_educp)
if score

te *= 100
end
tests = conditionings(data)
res = zeros(length(tests))
[(test[1], mean(te[test[2]])) for test in tests]

end
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