
DAP: LSTM-CRF Auto-encoder

Yuan Liu
Carnegie Mellon University

yuanl4@andrew.cmu.edu

Advisor: Matthew R. Gormley
Carnegie Mellon University
mgormley@cs.cmu.edu

Abstract

The LSTM-CRF is a hybrid graphical model
which achieves state-of-the-art performance in
supervised sequence labeling tasks. Collecting
labeled data consumes lots of human resources
and time. Thus, we want to improve the per-
formance of LSTM-CRF by semi-supervised
learning. Typically, people use pre-trained
word representation to initialize models em-
bedding layer from unlabeled data. How-
ever, these word representations are model-
agnostic, which means they were trained with-
out knowledge of the LSTM-CRFs structure.
Thus, we introduce auto-encoder training for
the LSTM-CRF to tune the models parame-
ters by adding a decoder after the CRF. We
compare the performance of these two meth-
ods and find that while the auto-encoder can
improve performance in some situation, the
model-agnostic approach achieves more uni-
versal improvement. We also how to use mini-
batches in LSTM-CRF.

1 Introduction

In sequence labeling tasks, a single categorical la-
bel is assigned to each element of the sequential
input. It covers lots of natural language process-
ing (NLP) tasks, including part of speech (POS)
tagging, chunking, and named entity recognition
(NER). How to establish an accurate and computa-
tionally efficient sequence labeling model is a cor-
nerstone of NLP.

The key point of sequence labeling is to utilize
both the past and future context to make a pre-
diction. Based on this idea, a number of prob-
abilistic graphical models and neutral networks
have been established to solve sequence label-
ing tasks. The hidden Markov model (Eddy,
1996), maximum entropy Markov model (McCal-
lum et al., 2000) and conditional random field
(CRF) (Lafferty et al., 2001) are high-performance

sequence labeling models. They rely heavily on
hand-crafted features and task-specific resources.
Other more complex and deeper neural networks
have also been proposed to solve these tasks, such
as long short term memory networks (LSTM)
(Hochreiter and Schmidhuber, 1997).

In recent years, the bi-directional LSTM-CRF
achieves state-of-the-art performance on some se-
quence labeling tasks (Huang et al., 2015). It is a
hybrid model that combines the feature learning of
a neural network with the effective structured pre-
diction of probabilistic graphical models. In this
paper, we want to increase the performance of this
model via semi-supervised learning.

The embedding layer plays a vital role in the
LSTM-CRF (Collobert et al., 2011). It converts
each one-hot encoded word into a continuous vec-
tor space with many fewer dimensions. Lots of
work has shown a good initialization of this layer
can increase the performance of models signifi-
cantly (Lample et al., 2016). People often use pre-
trained word representation, such as GloVe (Pen-
nington et al., 2014) and SENNA (Collobert et al.,
2011) to initialize it. However, the word repre-
sentation training process does not fully utilize the
structure of LSTM-CRF. It is a model-agnostic
method.

In this paper, we introduce a model-specific
semi-supervised method to tune the embedding
layer. Ammar et al. (2014); Lin et al. (2014) pro-
pose the CRF auto-encoder, which regenerates the
input sentences according to the marginal distri-
bution of a CRF. Thus, they can use large unla-
beled datasets to train the whole model. We gen-
eralize this method to obtain the LSTM-CRF auto-
encoder.

Our primary contribution is the application of
the auto-encoder structure to the LSTM-CRF. We
first maximize the supervised log-likelihood of
CRF layer to initialize the LSTM-CRF. Then train

the embedding layer’s parameters by the auto-
encoder structure. When we are tuning the embed-
ding layer, the information of LSTM-CRF is ac-
cessible. In this sense, we obtain a model-specific
method. According to the result of Ammar et al.
(2014); Lin et al. (2014), modeling unlabeled data
using CRF autoencoders did not improve predic-
tion accuracy. We figure out this issue, thanks to
the subsampling probabilities mentioned in Arora
et al. (2016).

We use CoNLL-2000 (Tjong Kim Sang and
Buchholz, 2000) as labeled datasets, and evalu-
ate the performance of our model-specific method
with various proportion of unlabeled Wikipedia
datasets (Al-Rfou et al., 2013).

The remainder of the paper is organized as fol-
lows. Section 2 describes the LSTM-CRF. Section
3 shows how to apply the auto-encoder structure to
the LSTM-CRF. Section 4 shows the training pro-
cedure and experiments result.

2 LSTM-CRF

The LSTM-CRF is the state-of-the-art method for
some sequence labeling tasks. In this section, we
provide a brief introduction of the LSTM-CRF,
starting from its three key components: embed-
ding layer, LSTM, CRF.

2.1 Embedding Layer
Representations of words in a continuous vector
space play a vital role in natural language pro-
cessing by grouping similar words (Mikolov et al.,
2013), which is the goal of embedding layer in
sequence labeling tasks. Following prior work
(Lample et al., 2016), we concatenate word-level
embedding and LSTM based character-level em-
bedding to do word representation.

Figure 1: Embedding Layer.

2.1.1 Word-level Embedding
For efficiency, words are fed to neural network
as indices taken from a finite dictionary. Obvi-
ously, a simple index does not carry much useful
information about the word. It has been shown in
(Collobert et al., 2011) that word-level embedding
plays a vital role to improve sequence labeling per-
formance.

Thus, we need a word-level embedding layer
to map each word index into a vector in contin-
uous space, by a lookup table operation. Mathe-
matically, for the xth word in the finite dictionary
D, the dword-dimensional representation vector is
given by the lookup table layer LTW (·):

LTW (x) =Wx,: (1)

In Eq.1, W ∈ R|D|×dword is a matrix of parame-
ters to be learned, andWx,: is the xth row ofW .

In large text, the most frequent words occur
much more times than rare words. To counter
this imbalance, Mikolov et al. (2013) introduce the
subsampling of frequent words. In this paper, we
adopt the weighted subsampling, which is men-
tioned in Arora et al. (2016).

q(w) =
a

a+ p(w)
(2)

When updating the word-level embedding layer,
we times the derivative of word w by q(w).

2.1.2 Character-level Embedding
Prefixes and suffixes are sets of letters that can be
added at the beginning or the end of words. It
is useful for natural language processing partic-
ularly in morphologically rich languages. Even
in morphologically-poor languages, such as En-
glish, such features are useful: for example, in
part-of-speech tagging, the suffix -able transforms
the verb like into the adjective likeable. By rec-
ognizing this suffix, we can distinguish likeable as
adjective.

Character-level modeling has long been effec-
tive across NLP (Verwimp et al., 2017). We adopt
the character-level embedding approach of (Lam-
ple et al., 2016). Its architecture is shown in
Fig.1. A character lookup table keeps mapping
each character in a given word to corresponding
feature vector. A bi-directional LSTM treats these
feature vectors as input, and concatenates the last
hidden state of both forward LSTM and back-
ward LSTM as output. More details about the

bi-directional LSTM can be found in Section 2.2.
The forward LSTM is capable to learn the prefix
information, while the backward LSTM can learn
the suffix information.

In our paper, we concatenate the word-level em-
bedding layer and character-level embedding layer
as the embedding layer of the LSTM-CRF.

2.2 LSTM Network

When you read this sentence, you understand each
word based on your understanding of all previous
ones. Your thought is persistent, and you know the
order of words in the sentence. The recurrent neu-
ral network (RNN) is a family of neural networks,
which is designed to capture this intuition via fea-
ture learning. Due to the internal memory in RNN,
it allows information to pass from one time-slot to
the next. It has shown great promise in many NLP
problems.

An RNN can take a sequence of vectors
(x1,x2, . . . ,xn) as input and generate another se-
quence of vectors (h1,h2, . . . ,hn) as output. The
output ht at time t is depended on the previous
(x1,x2, . . . ,xt). The dependence is attained by
its internal memory. Unfortunately, a vanilla RNN
cannot take advantage of all the history informa-
tion. It tends to be biased towards the most recent
input due to the vanishing gradient problem (Ben-
gio et al., 1994).

Long Short-term memory network (LSTM) is a
typical variant of RNN, which is designed to fix
this issue. The key to LSTM is the cell state. We
adopt the conveyor belt analogy of (Olah, 2015).
The cell state is kind of like a conveyor belt. The
information flows through the belt, with only some
minor linear interactions, and keeps long-term de-
pendency. The LSTM does have the ability to re-
move or add information to the cell state, care-
fully regulated by structures called gates. Gates
are a way to let information through optionally.
An LSTM has four kinds of gates to protect and
control the cell state. They are the input gate, for-
get gate, cell gate, and out gate. There are many
different implementations of these gates. We use
the same implementation as Pytorch (Paszke et al.,

2017):

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

gt = tanh(Wigxt + big +Whcht−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(3)

In Eq.3, σ is the element-wise sigmoid function,
� is the element-wise product, ht is the hidden
state at time t, ct is the cell state at time t, xt is
the input at time t, and it, ft, gt, ot are the input,
forget, cell, and out gates, respectively.

According to the above formula, an LSTM can
generate an output ht for the left context of the
tth word in the given sentence (x1,x2, . . . ,xn).
We can rewrite ht as

−→
h t. In sequence labeling

task, we can have access to both past (left con-
text) and future (right context) input tokens at the
same time. It is natural to generate an output of
the right context

←−
h t. It can be obtained using a

second LSTM that reads the same input sequence
in reverse. We refer to the former as the forward
LSTM and the latter as the backward LSTM. This
forward and backward LSTM pair is known as a
bi-directional LSTM (Graves and Schmidhuber,
2005). We concatenate the left and right context
representation, ht = [

−→
h t;
←−
h t] as the output of Bi-

LSTM.

2.3 CRF
Conditional random field (CRF) is a type of undi-
rected probabilistic graphical model. It is often
used for labeling or parsing sequential data, such
as part-of-speech (POS), chunking, and name-
entity-recognition (NER). In this paper, we mainly
use a bigram linear chain CRF to predict labels for
sequential input words.

We consider the score matrix P as the input of
the CRF. The size of P is n × (k + 2), where n
is the length of the corresponding input sentence
(X = (x1,x2, . . . ,xn)), k is the number of dis-
tinct tags. We plus 2 here because of the start and
stop tag. We use P as the emission matrix in the
linear chain CRF and Pi,j is the score of the jth

tag of the ith word in a sentence. A is the transi-
tion matrix of the linear chain CRF, and Ai,j rep-
resents the score of a transition from the ith tag to

the jth tag. y0 and yn+1 is the start and stop tag of
a sentence, which is common trick used by natural
language processing. Thus the size of matrix A is
(k + 2) × (k + 2). For a sequence of predictions
y = (y1, y2, . . . , yn), we define its score as:

S(X,y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=1

Pi,yi (4)

The CRF defines the probability for the se-
quence of predictions y can be driven based on
this score:

p(y|X) =
1

Z(X)
eS(X,y) (5)

In this equation, Z(X) =
∑

ỹ∈YX
eS(X,ỹ) is

the partition function, and YX contains all pos-
sible tag sequences for the input sentence. Dur-
ing training, we maximize the following log-
likelihood of the correct tag sequence:

log p(y|X) = S(X,y)− logZ(X) (6)

The calculation of Z(X) is the key to maximize
the log-likelihood function. We use the forward-
backward algorithm to calculate it.

In the forward-backward algorithm, we define
forward variables α and backward variables β as
follows:

αt,j := ePt,j
∑
ỹt−1

eAỹt−1,jαt−1,ỹt−1 (7)

βt,j =
∑
ỹt+1

eAj,ỹt+1
+Pt+1,ỹt+1βt+1,ỹt+1 (8)

Then the partition function Z(X) and the
marginal distribution can be calculated α and β:

Z(X) = αn+1,s (9)

p(yt|X) =
αt,ytβt,yt∑
ỹt
αt,ỹtβt,ỹt

(10)

where s is the stop tag.

2.4 Hybrid System
Embedding layer, Bi-directional LSTM layer and
CRF layer are key components of this model. Two
Linear + Relu layers work as pipes to transfer the
data through this model. The model’s structure is
shown in Fig.2.

• Embedding layer: Each input of the
embedding layer is a sentence X =
(x1, x2, . . . , xn). The goal of the embedding
layer is to reduce dimensions. In sentenceX ,
embedding layer convert each word xi to a
continuous vector space with much lower di-
mensions. In this paper, we combine word-
level embedding and character-level embed-
ding to do embedding, which we talk about
in section 2.1.

• Linear + Relu layer 1: Using the output of
embedding layerE = (e1, e2, . . . , en) as in-
put, the linear layer projects each vector in
E to fit the input size of the bi-directional
LSTM layer. A Relu activation function fol-
lows this linear projection.

• Bi-directional LSTM layer: Using the pro-
jected embedding vectors as input, the Bi-
directional LSTM layer works like section
2.2. The output of the forward and backward
LSTM is concatenated to be the output. We
add drop-out for this output and set drop-out
ratio p = 0.5 (Zaremba et al., 2014).

• Linear + Relu layer 2: Using the output of
the bi-directional LSTM L = (l1, l2, . . . , ln)
as input, the linear layer projects each vector
in L to fit the input size of CRF layer, which
is the size of tag set plus two. A Relu activa-
tion function follows this linear projection.

• CRF layer: Using the output of Linear +
Relu layer 2 to be theP in Eq.4, we can com-
pute the log-likelihood and marginal distribu-
tion of the given sentence, following the CRF
in section 2.3.

3 Model-specific method

To fully utilize the information from LSTM-
CRF and train the whole model with both la-
beled and unlabeled dataset, we apply the auto-
encoder structure to the LSTM-CRF. It is a model-
specified method, based on the work of Ammar
et al. (2014). They propose the CRF auto-encoder,
which regenerates the input sentences according
to the marginal distribution of CRF and guaran-
tees the capability to train the whole model with
large unlabeled datasets. In this section, we intro-
duce the CRF auto-encoder model first. Then we
describe how to generalize this method to obtain
the LSTM-CRF auto-encoder.

Figure 2: An LSTM-CRF

3.1 CRF Auto-encoder

The CRF auto-encoder framework consists of an
encoding model and a decoding model. The en-
coding model is a linear-chain CRF, which is de-
scribed in section 2.3. The decoding model inde-
pendently generates the tokens X̂ conditional on
the corresponding labels, using a simple categori-
cal distribution.

p(y, X̂|X) =

n∏
i=1

θx̂i|yip(yi|X)

w.r.t
∑
x̂i

θx̂i|yi = 1, for i = 1, . . . , n
(11)

We can use the cross entropy between X
and p(X̂|X) as the loss function for unlabeled
datasets.

3.2 LSTM-CRF Auto-encoder

The CRF auto-encoder generates each token inde-
pendently. However, this independence assump-
tion is meaningless. Each word within a sentence
should be dependent on all prior ones. Using an
LSTM as decoder may be a good attempt to uti-
lize this dependency.

We tried two different decoders in our work.
The first decoder is a linear layer, as we describe
in the CRF auto-encoder. The second decoder is
an LSTM layer.

• Linear decoder: Given a sentence X , the in-
put of the linear decoder is the CRF layer’s
marginal distribution p(y|X), which is a 2-
dimensional matrix of size l × k, where l is

the length of the input sentence. The param-
eters of the linear layer is θ, which is a 2-
dimensional matrix of size k × v. v is the
size of the dictionary D. We can compute
p(X̂|X) as we mentioned in section 3.1. We
use the cross entropy between p(X̂|X) and
X as the loss function.

• LSTM decoder: We view p(y|X) as a se-
quence of vectors, and the size of each vector
is k. Then we use it as the input of the LSTM
decoder layer. The output of this LSTM layer
is Ê, and its dimension equals to the embed-
ding layer’s output dimension. We use the
mean square between Ê and E as the loss
function. According to Eq.3, the number of
parameters in the LSTM decoder is 4e2+4ek,
where e is the embedding dimension. Be-
cause v � e, the linear decoder and LSTM
decoder almost has the same number of pa-
rameters. We reconstruct the output of em-
bedding layerE instead of the input sentence
X because the size v of the word dictionary
is too large to learn. If we still reconstruct
X , there will be 4v2 +4vk parameters in the
LSTM decoder, which is too many to learn1 .

We use Pytorch to implement the whole model
(Paszke et al., 2017). Pytorch is built on an
auto differentiation system, so we can use back-
propagation to train our model. In this system, the
time and memory cost for training is proportional
to inference (Maclaurin et al., 2015). If we can
speed up the inference, then the training process
will be accelerated automatically.

4 Acceleration

In this paper, we want to implement the LSTM-
CRF and tune the parameters based on the
Wikipedia dataset, which contains 88,083,626 un-
labeled sentences (Al-Rfou et al., 2013). How-
ever, most of existing LSTM-CRF implementa-
tions do not have the ability to deal with this huge
dataset. We test the speed of several implementa-
tions of LSTM-CRF (without character-level em-
bedding), on the CoNLL-2000 dataset (8,931 sen-
tences) (Tjong Kim Sang and Buchholz, 2000).

1 According to the parameters we choose in section 5. If
we reconstruct X by the LSTM decoder, the number de-
coder’s parameters is 640 times more than the linear de-
coder’s, and the training speed is unacceptable. If we recon-
struct E by the LSTM decoder, the number decoder’s param-
eters is 25% of the linear decoder’s, and the training speed is
almost the same as the linear decoder.

The running time of each implementations are
shown in Table 1.

Implementation Speed
Huang et al. (2015) within 1 hour
Pytorch tutorial 28 minutes
Lample et al. (2016) 164 seconds
This work 12 seconds

Table 1: Time for training one epoch CoNLL-2000
dataset.

Training one epoch of the Wikipedia dataset
needs at least 2 weeks with the implementation of
(Lample et al., 2016)2 . In this case, we need to
accelerate the LSTM-CRF.

With GPU acceleration, neural net training is
10-20 times faster than with CPUs (Chetlur et al.,
2014). Mini-batch gradient descent can fully uti-
lize capacity of GPU, and provide computationally
more efficient process than stochastic gradient de-
scent. We want to implement high-speed LSTM-
CRF based on mini-batch gradient descent.

Mini-batch gradient descent splits the training
dataset into small batches to train the model. The
length of each input data should be consistent in
a given batch. However, the length of each in-
put sentence varies in natural language processing
tasks. So we need to appending multiple 0s at the
end of sentence, and guarantee the length of input
sentences is consistent within one batch.

We need to make sure the loss function un-
changed after padding. Modern deep learn-
ing framework can do automatic differentiation
(Maclaurin et al., 2015). If we keep the loss func-
tion unchanged, the parameters’ derivative will ei-
ther not be changed after padding.

Figure 3: Mini-batch in CRF.

The loss function of LSTM-CRF is the super-
vised neg-log-likelihood function, which is driven
from the forward variable αt. For a given sen-

2It is implemented in Theano (Bastien et al., 2012).

tence X = (x1,x2, . . . ,xn) within one batch
sentences, the calculation of αt for X should be
stopped when n < t < l, where l is the maximum
sentence length within this batch. So we create
a mask matrix to fix this issue. maski,j = 0
means this batch’s ith sentence’s jth index is 0.

αt =masktαt + (1−maskt)αt−1 (12)

As shown in Fig.3, maski,j will equal to zero,
if j is greater than the ith sentence’s length. It
leads to this sentence’s αt will keep unchanged
when t is greater than its length.

The main difference between ours implemen-
tation and the implementation of (Lample et al.,
2016) is that we use mini-batches. The speed re-
sult in table 1 shows this trick can improve the
speed 13 times more.

5 Experiment

5.1 Data

We evaluate the performance of both LSTM-
CRF and LSTM-CRF auto-encoder model with
CoNLL-2000 dataset which contains 8,936 train-
ing sentences and 2,012 testing sentences (Tjong
Kim Sang and Buchholz, 2000). The Wikipedia
dataset is an unlabeled dataset, which contains
88,083,626 sentences (6 billion tokens) (Al-Rfou
et al., 2013). We use the Wikipedia dataset to
tune the embedding layer’s parameters. We also
use parts of Wikipedia datasets to train the GloVe
word representations.

5.2 Training procedure

We use block coordinate descent to optimize our
model, which is described in (Lin et al., 2014), as
the following process:

• Supervised train the LSTM-CRF on CoNLL-
2000 datasets until it overfits, by maximizing
the log-likelihood of the CRF layer in Eq.6.
In this way, we initialize the parameters of
LSTM and CRF layer;

• Update the parameters of the embedding
layer and decoder layer with the unlabeled
wikipedia datasets, by minimizing the loss
function we defined in the LSTM-CRF auto-
encoder part;

• Supervised train the LSTM-CRF again to get
the final accuracy.

5.3 Optimizer
We choose stochastic gradient descent (SGD)
method to train our model and update parameters
on every training batch. We also use early-stop to
train our model. We decrease the learning rate 10
times, whenever the network outperforms the pre-
vious best model twice. According to the result,
SGD with the 0.1 initial learning rate and gradient
clipping to 5.0 achieves the highest accuracy (Pas-
canu et al., 2013). We try several other gradient
methods, such as SGD, Adadelta, Adam and RM-
SProp (Zeiler, 2012; Kingma and Ba, 2014; Tiele-
man and Hinton, 2012). Although other gradient
methods may achieve faster convergence speed,
none of their accuracy is as good as SGD.

5.4 Spelling features
We do not use the POS feature in CoNLL-2000
datasets. Apart from replacing every digit with a
zero and using the lower case of every word, we
extract the following features for a given word.

• whether it has all lower case letters

• whether it has all upper case letters

• whether it starts with a capital letter

• whether it has any capital letter except the
first one

• whether it mixes letters and digits

• whether it contains no letters

• whether it contains no digits

• whether it has all special characters

5.5 Choice of model

Parameter Size
Vocab Size 8000
Word-level Embedding Dimension 50
Character Size 25
Character-level Embedding Dimension 25
LSTM Input Dimension 150
LSTM Hidden Dimension 150
Initial Learning Rate 0.1
Gradient Clipping Norm 5.0

Table 2: Model’s hyper-parameters

In Table 2, we list our hyper-parameters. We
tried different vocabulary sizes, from 6,000 to

Model F1 score
w.e.+random 89.82
w.e.+random+dropout 90.54
w.e.+s.f.+random+dropout 91.71
w.e.+ s.f.+c.e.+random+dropout 92.00
w.e.+s.f.+c.e.+GloVe+dropout 93.80
w.e.+s.f.+c.e.+SENNA+dropout 94.37
w.e.+s.f.+c.e.+linear+dropout 92.09
w.e.+s.f.+c.e.+linear+s.s+dropout 92.90
w.e.+s.f+c.e.+LSTM+dropout 91.94
(Huang et al., 2015)+random 94.13
(Huang et al., 2015)+SENNA 94.46
(Yang et al., 2016) 94.66
(Collobert et al., 2011) 94.32

Table 3: w.e, s.f.,s.s. and c.e. means word-level embed-
ding, spell features, sub-sampling and character-level
embedding, respectively. Glove, SENNA and random
points out how to initialize the word-level embedding
layer. Linear and LSTM shows the type of decoder that
used by us.

17,000 (17,000 is about the total number of dis-
tinct words in CoNLL-2000), and found 8,000
achieves the best performance in supervised train-
ing. We set the word-level embedding dimension
equal to 50, the same as the SENNA embedding
dimension (Collobert et al., 2011). We chose the
same character size and character-level embedding
dimension as (Lample et al., 2016). We tried sev-
eral LSTMs with different number of layers and
hidden size, and their performances are almost the
same.

We also test another supervised loss function
of CRF, which is an approximation of a Ham-
ming loss function (Hamming, 1950), and seeks to
maximize the per-label accuracy of the prediction
(Gross et al., 2006). However, this loss function’s
performance is not as good as the supervised neg-
ative log-likelihood function. To get correspond-
ing tags from the CRF layer, we evaluate the per-
formance of the marginal decoder and Viterbi de-
coder (Forney Jr, 2005). Their accuracy perfor-
mance is almost the same, and Viterbi decoder is
twice faster than the marginal decoder. So in this
work, we choose the negative log-likelihood as the
supervised loss function for the LSTM-CRF, and
use the Viterbi decoder. We also test other training
methods, such as update all the parameters when
doing unsupervised training or first do supervised
learning then do unsupervised learning alternately.
None of them is better than our method.

Figure 4: Comparison between different semi-
supervised methods.

The performance of our model is shown in Ta-
ble 3 and Fig.4. In Table 3, we show the F1
scores of our model according to different initial-
ization methods and different decoders. In Fig.4,
we compare the performance between different
semi-supervised methods. The x-axis of this figure
shows the size of unlabeled dataset that we used.

According to Table 3 and Fig.4, the character-
level embedding and spelling features can im-
prove the performance a lot. The auto-encoder
without subsampling cannot improve the perfor-
mance of LSTM-CRF, which is the same as the
result of Ammar et al. (2014). Although, the per-
formance of auto-encoder becomes much better
with subsampling, it still can not beat the model-
agnostic method, which uses pre-trained word rep-
resentation to initialize the word-level embedding
layer. Enlarging the unsupervised training in the
LSTM-CRF auto-encoder seems useless. The
performance of the linear decoder is better than
the LSTM decoder. In future work, we hope to
explore whether the combination of a language-
modeling loss function (akin to those used by
SENNA) with our LSTM decoder losses could
yield even better semi-supervised learners than ei-
ther one in isolation.

In Table 3, we also compare the F1 with other
works. (Huang et al., 2015) achieve unexpectedly
high F1 when the embeddings are randomly ini-
tialized because they use lots of spelling features
and context features. (Yang et al., 2016) get the
best performance among these four works.

6 Conclusions

In this paper, we propose a new variance of the
LSTM-CRF to handle sequence tagging task. We
apply the auto-encoder structure to improve the
performance of the LSTM-CRF. It is shown that
our embedding layer can improve the performance
slightly, even though it still can not beat the perfor-
mance of using pre-trained word representation,
such as GloVe and SENNA. We have also shown
the performance of the LSTM-CRF auto-encoder
will not improve, with larger unlabeled datasets.
We also show how to apply mini-batch gradient
descent to fully utilize GPU resource. The speed
of our implementation is as least 13 times faster
than other existed implementations.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word represen-
tations for multilingual nlp. arXiv preprint
arXiv:1307.1662 .

Waleed Ammar, Chris Dyer, and Noah A Smith. 2014.
Conditional random field autoencoders for unsuper-
vised structured prediction. In Advances in Neural
Information Processing Systems. pages 3311–3319.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016.
A simple but tough-to-beat baseline for sentence em-
beddings .

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian Goodfellow, Arnaud Bergeron,
Nicolas Bouchard, David Warde-Farley, and Yoshua
Bengio. 2012. Theano: new features and speed im-
provements. arXiv preprint arXiv:1211.5590 .

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks 5(2):157–166.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch,
Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Sean R Eddy. 1996. Hidden markov models. Current
opinion in structural biology 6(3):361–365.

G David Forney Jr. 2005. The viterbi algorithm: A
personal history. arXiv preprint cs/0504020 .

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural
Networks 18(5):602–610.

Samuel S Gross, Olga Russakovsky, Chuong B Do,
and Serafim Batzoglou. 2006. Training conditional
random fields for maximum labelwise accuracy. In
NIPS. pages 529–536.

Richard W Hamming. 1950. Error detecting and er-
ror correcting codes. Bell Labs Technical Journal
29(2):147–160.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

John Lafferty, Andrew McCallum, Fernando Pereira,
et al. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence
data. In Proceedings of the eighteenth international
conference on machine learning, ICML. volume 1,
pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Chu-Cheng Lin, Waleed Ammar, Lori Levin, and
Chris Dyer. 2014. The cmu submission for the
shared task on language identification in code-
switched data. In Proceedings of the First Workshop
on Computational Approaches to Code Switching.
pages 80–86.

Dougal Maclaurin, David Duvenaud, and Ryan P
Adams. 2015. Autograd: Effortless gradients in
numpy. In ICML 2015 AutoML Workshop.

Andrew McCallum, Dayne Freitag, and Fernando CN
Pereira. 2000. Maximum entropy markov models
for information extraction and segmentation. In
Icml. volume 17, pages 591–598.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Christopher Olah. 2015. Understanding lstm networks.
GITHUB blog, posted on August 27:2015.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning. pages 1310–1318.

Adam Paszke, Sam Gross, and Soumith Chintala. 2017.
Pytorch.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vec-
tors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP).
pages 1532–1543. http://www.aclweb.org/
anthology/D14-1162.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2):26–31.

Erik F Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of the 2nd workshop on
Learning language in logic and the 4th conference
on Computational natural language learning-Volume
7. Association for Computational Linguistics, pages
127–132.

Lyan Verwimp, Joris Pelemans, Patrick Wambacq,
et al. 2017. Character-word lstm language models.
arXiv preprint arXiv:1704.02813 .

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. arXiv preprint arXiv:1603.06270
.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162

