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Background. Domain adaptation focuses on the situation where we have data generated from
multiple domains, which are assumed to be different, but similar, in a certain sense. In this work
we focus on the case where there are two domains, known as the source and the target domain.
The source domain is assumed to have a large amount of labeled data while labeled data in the
target domain is scarce. The goal of domain adaptation algorithms is to generalize better on the
target domain by exploiting the large amount of labeled data in the related source domain.

Aim. In this data analysis project we seek to develop a neural network model that is able to learn
feature representations which are invariant to the shift between source and target domains.

Methods. Our model is based on the recently proposed domain adversarial neural network, where
the goal is to learn representations that are discriminative for the main learning task at the source
domain, while at the same time being invariant to the shift between the source and target domains.
Our model improves over the domain adversarial neural network by incorporating an auxiliary
auto-encoder that works as an unsupervised regularizer to help the training of representations.

Results. We conduct experiments on the Amazon benchmark data set for sentiment analysis to
compare the proposed model with related approaches in the literature. We show that our model
significantly outperforms alternative approaches in classification accuracies.

Conclusions. This paper explores to combine two strands of domain adaptation methods, i.e.,
the representation based adversarial training, and the unsupervised pretraining scheme using auto-
encoders, into a unified framework. The proposed method is able to combine the advantages of the
above two complementary methods, leading to better generalization on the target domain.
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1 Introduction

In the standard setting of computational learning theory (Valiant, 1984; Vapnik and Vapnik, 1998),
both training and test instances are assumed to be drawn from the same underlying distribution. In
practice, making accurate predictions relies heavily on the existence of labeled data for the desired
tasks. However, generating labeled data for new learning tasks is often time-consuming. As a result,
this poses an obstacle for applying machine learning methods to broader application domains. It
is thus desirable to develop methods that can exploit data from multiple related domains. Such a
scenario is known as domain adaptation, the main topic of this analysis project. Domain adaptation
focuses on the situation where we have data generated from multiple domains, which are assumed
to be different, but similar, in a certain sense. In this project we focus on the case where there are
two domains, known as the source and the target domain. The source domain is assumed to have a
large amount of labeled data while labeled data in the target domain is scarce. The goal of domain
adaptation algorithms under this setting is to generalize better on the target domain by exploiting
the large amount of labeled data in the related source domain.
In this project we are going to attack the domain adaptation problem by proposing a unified frame-
work based on the recent advances in adversarial neural networks. One way to approach domain
adaptation is to develop invariant feature representations that have similar marginal distributions
on both source and target domains (Ajakan et al., 2014; Ganin and Lempitsky, 2015; Ganin et al.,
2016). Another strand of research in unsupervised learning that motivates us is to build robust fea-
ture representations by stacked denoising auto-encoders (Vincent et al., 2008; Chen et al., 2012).
Both approaches have been demonstrated to be effective in exploiting unlabeled instances from
target domains to help generalization via training using only labeled instances from the source
domain. Although both these two methods are representation learning approaches, their objectives
are quite different, and can be understood as complementary to each other.
In this paper we develop a unified network that is able to learn feature representations which are
invariant to the shift between source and target domains, while at the same time being robust
to reconstruction errors. The model is based on the recently proposed domain adversarial neural
network (Ajakan et al., 2014; Ganin et al., 2016), where the goal is to learn representations that
are informative for the desired learning task at the source domain, while at the same time being
invariant to the shift between the source and target domains. The proposed model improves over
the domain adversarial neural network by incorporating an auxiliary auto-encoder that works as
an unsupervised regularizer to help the training of representations. Such a model naturally in-
corporates the above two complementary methods in a unified framework, while only incurs little
computational overhead. In summary, our model is designed to achieve the following three objec-
tives simultaneously in a unified framework: 1). It learns representations that are informative for
the main learning task at the source domain. 2). It learns invariant features that are indistinguish-
able between the source and the target domains. 3). It is able to reconstruct the original input
instances. To validate the effectiveness of the proposed model in domain adaptation, we compare
it with state-of-the-art models in the literature on the Amazon benchmark data set for sentiment
analysis. We show that our model consistently outperforms baseline methods while only incurring
little computational overhead.
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2 Related Work

There are two main streams of research for domain adaptation. The first one is based on reweigh-
ing scheme that aims to match the source and target domain distributions (Huang et al., 2006;
Gong et al., 2013). The other line of works focus on learning feature transformations such that
the feature distributions in the source and target domain are close to each other (Ben-David et al.,
2007, 2010; Ajakan et al., 2014; Ganin et al., 2016). Both approaches have well-justified theoretical
foundations (Huang et al., 2006; Ben-David et al., 2010) to guarantee their successes under proper
assumptions, however in practice it was observed that unsupervised pretraining using stacked de-
noising auto-encoders (Vincent et al., 2008; Chen et al., 2012) often improves the generalization
accuracy (Ganin et al., 2016).
The general approach for domain adaptation starts from algorithms that focus on linear hypothesis
class (Blitzer et al., 2006; Germain et al., 2013; Cortes and Mohri, 2014). The linear assumption
can be relaxed and extended into the non-linear setting using kernel trick, leading to a reweighting
scheme that can be efficiently solved via quadratic programming (Huang et al., 2006; Gong et al.,
2013). Recently, due to the availability of rich data and powerful computational resources, non-
linear representations and hypothesis classes have been increasingly explored (Glorot et al., 2011;
Baktashmotlagh et al., 2013; Chen et al., 2012; Ajakan et al., 2014; Ganin et al., 2016). This line
of works focuses on building common and robust feature representations among multiple domains
using either supervised neural networks (Glorot et al., 2011), or unsupervised pretraining using
denoising auto-encoders (Vincent et al., 2008, 2010).
Adversarial training techniques which aim to build feature representations that are indistinguishable
between source and target domains have been proposed in the last few years (Ajakan et al., 2014;
Ganin et al., 2016). Specifically, one of the central ideas is to use neural networks, which are powerful
function approximators, to approximate a distance measure known as H-divergence between two
domains (Kifer et al., 2004; Ben-David et al., 2007, 2010). The overall algorithm can be viewed as a
zero-sum two-player game: one network tries to learn feature representations that can fool the other
network, whose goal is to distinguish representations generated from the source domain between
those generated from the target domain. The goal of the algorithm is to find a Nash-equilibrium of
the game, or the stationary point of the min-max saddle point problem. Ideally, at such equilibrium
state, feature representations from the source domain will share the same distributions as those
from the target domain, and as a result, better generalization on the target domain can be expected
by training models using only labeled instances from the source domain.
Theoretical work on domain adaptation is abundant. Kifer et al. (2004) proposed the H-divergence
to measure the similarity between two domains and derived a generalization bound on the target
domain using empirical error on the source domain and the H-divergence between the source and
the target. This idea has later been extended to multi-source domain adaptation (Blitzer et al.,
2008) and the corresponding generalization bound has been developed as well. We refer readers
to Ben-David et al. (2010) for a thorough treatment on this subject. Concurrently, Mansour
et al. (2009a) derived learning bounds on domain adaptation using discrepancy distance, which
generalizes H-divergence from binary loss function to arbitrary loss functions. See (Cortes et al.,
2008; Mansour et al., 2009a,b,a) for more details.
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3 A Theoretical Model for Domain Adaptation

In Sec. 1 we briefly mention that in order to hope for a successful domain adaptation algorithm,
source domain and target domain should be similar to each other in a certain sense. Clearly we need
to define a distance metric in order to measure the similarity of two distributions. Several notions
of distance have been proposed for the purpose of domain adaptation (Ben-David et al., 2007, 2010;
Mansour et al., 2009a,b). In this paper we will focus on using the H-divergence (Ben-David et al.,
2007, 2010), and the reasons for our choice will be clear in the sequel.

Definition 1 ((Ben-David et al., 2007, 2010)). Given two domain distributions DXS and DXT over
X, and a hypothesis class H, the H-divergence between DXS and DXT is

dH(DXS ,DXT ) = 2 sup
η∈H

∣∣∣∣∣ Pr
x∼DX

S

[η(x) = 1]− Pr
x∼DX

T

[η(x) = 1]

∣∣∣∣∣ (1)

One notable property of Def. 1 is that it depends on the capacity of the hypothesis class H to
distinguish between the source and target distributions. More specifically, if we define

H−1 = {η−1({1}) | η ∈ H}

then we have H−1 ⊆ 2X , and dH(·, ·) will have the following equivalent definition:

dH(DXS ,DXT ) = 2 sup
A∈H−1

∣∣∣∣∣Pr
DX

S

[A]− Pr
DX

T

[A]

∣∣∣∣∣
Readers who are familiar with the total variation distance, or the L1 distance, may find the above
definition closely related. In fact, when H contains all the possible measurable functions from X to
{0, 1}, or equivalently, when H−1 contains all the measurable subsets of X, then our definition of
dH(·, ·) reduces to the total variation distance. In this case, dH(DXS ,DXT ) = 0 iff PrDX

S
(·) = PrDX

T
(·)

almost surely. Consider another extreme case where H only contains two constant functions that
either label all the instances to be 0 or to be 1, (equivalently, H−1 = {∅, X}), then dH(DXS ,DXT ) = 0
holds for every DXS ,DXT . It is now clear that Def. 1 is flexible in the sense that it allows practitioners
to define a hierarchy of distance functions with different granularties based on the complexity of
our hypothesis space H. As we will see shortly, this is also a necessary condition in order to derive
a finite sample generalization bound based on VC theory.
Assume that H−1 is symmetric in the following sense: if C ∈ H−1, we also have X\C ∈ H−1, then
it can be shown that the following equality holds:

dH(DXS ,DXT ) = 2

(
1− inf

η∈H

(
Pr

x∼DX
S

[η(x) = 0] + Pr
x∼DX

T

[η(x) = 1]

))
(2)

In practice since we do not have access to the true data generation distributions DXS and DXT , we
cannot hope to be able to compute Eq. 2 exactly. However, using unlabeled samples from both the
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source and the target domain, we can obtain an estimator of the H-divergence as:

d̂H(S, T ) = 2

(
1− 2 min

η∈H

[
1

2n

n∑
i=1

I[η(xi) = 0] +
1

2n

2n∑
i=n+1

I[η(xi) = 1]

])
(3)

where the first n samples come from the source domain and last n samples are from the target
domain. I[η(x) = 1] takes value 1 iff x is a sample from the source domain. Hence the term inside
the min function in the above function can be understood as the minimum classification error in
discriminating instances from the source and the target domains.
For any interesting hypothesis class H, the empirical H-divergence can also be hard to compute
exactly due to the minimization over the binary classification error, which is NP-hard even for simple
hypothesis class like half-spaces (Guruswami and Raghavendra, 2009). In practice practitioners
resort to convex relaxation techniques to smooth the binary classification loss function into other
loss functions, e.g., hinge loss, log-loss, etc. With the help of the empiricalH-divergence, Ben-David
et al. (2007) proves the following generalization bound for domain adaptation:

Theorem 1 (Ben-David et al. (2007)). Let H be a hypothesis class of V C-dimension d. With
probability 1− δ over the choice of samples S ∼ (DXS )n and T ∼ (DXT )n, for every η ∈ H:

RDT
(η) ≤ RS(η) +

√
4

n
(d log

2en

d
+ log

4

δ
) + 4

√
1

n
(d log

2n

d
+ log

4

δ
) + d̂H∆H(S, T ) + β

with β ≥ infη∗∈H[RDS
(η∗) + RDT

(η∗)], RS(η) = 1
n

∑n
i=1 I[η(xi) 6= yi] is the empirical source risk,

and H∆H is the symmetric difference of H.

Intuitively, the theorem above means that, under the setting of domain adaptation, the generaliza-
tion error can be low only if the following conditions hold:

1. β is small, i.e., there exists a hypothesis that is able to achieve a low risk on both the source
and the target distributions.1

2. The learning algorithm is able to find representations under which the empirical H-divergence
d̂H∆H(S, T ) between samples from S and T is small.

3. The hypothesis class should be rich enough so that the empirical error on the source domain
RS(η) is small.

Note that the generalization bound also introduces a natural tradeoff in choosing the complexity
of the hypothesis class H. Based on Thm. 1, Ajakan et al. (2014); Ganin and Lempitsky (2015)
designed a neural network model that aims to learn representations which are both discriminative
for the main learning task, i.e., to minimize RS(η), while at the same time are indistinguishable
between the source and the target domains, i.e., to minimize d̂H∆H(S, T ). Also note that the min
part of d̂H∆H(S, T ) should be interpreted as the error rate of the domain classifier. A small domain
classification error implies to a large distance function between S and T . On the other hand, if the
error rate is large, then S and T are close to each other.

1It is certainly possible that there is a hypothesis that achieves low risk on the target domain and a high risk on
the source domain. But we cannot hope to find such hypothesis if we only have access to labeled instances from the
source domain.
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4 Method

In this section we shall first describe the domain adversarial neural network (Ajakan et al., 2014;
Ganin and Lempitsky, 2015; Ganin et al., 2016) (DANN), and then propose our model, which we
term domain adversarial auto-encoder (DAuto), based on DANN.

4.1 Domain Adversarial Neural Network

The domain adversarial neural network (DANN) model proposed by Ajakan et al. (2014); Ganin
and Lempitsky (2015) is shown as follows:

Figure 1: Figure courtesy of Ganin and Lempitsky (2015). DANN contains three parts. The
feature learning part (in green) with parameter θf , the main classification part (in blue) with
parameter θy and the domain classification part (in red) with parameter θd. The gradients from
the main classification part and the domain classification part are combined together to update the
parameters of the feature learning component.

Let Ly(x, y; θf , θy) denote the main classification loss function and Ld(x; θf , θd) denote the surrogate
loss of the binary loss function for the domain classifier. In view of Thm. 1, once we fix our model
and the source and target domain data sets, we can only minimize the generalization bound by
minimizing the first and fourth terms in the upper bound, leading to the following optimization
problem:

min RS(η) + λ · d̂H∆H(S, T )

where λ > 0 is a hyperparameter to tradeoff the relative importances of these two terms. Plug in
the model shown in Fig. 1 and the defined loss function Eq. 3, ignoring all the constant terms, we
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can rewrite the objective function as

min RS(η) + λ · d̂H(S, T )

= min
θf ,θy

1

n

n∑
i=1

Ly(xi, yi; θf , θy)− λ ·min
θd

(
1

2n

n∑
i=1

Ld(xi; θf , θd) +
1

2n

2n∑
i=n+1

Ld(xi; θf , θd)
)

= min
θf ,θy

max
θd

1

n

n∑
i=1

Ly(xi, yi; θf , θy)− λ
(

1

2n

n∑
i=1

Ld(xi; θf , θd) +
1

2n

2n∑
i=n+1

Ld(xi; θf , θd)
)

(4)

(4) is a minimax saddle point optimization problem. Due to the use of nonlinear activation function,
each sub-problem is still nonconvex even when all the other parameters are fixed in (4). This
property makes (4) hard to optimize in practice. The min-max optimization formulation above
is very similar to the recently proposed generative adversarial network (Goodfellow et al., 2014),
whose primary goal is to generate samples that are hard to distinguish from the true instances in
the training data set. Both these two problems can be interpreted as a zero-sum game between two
players due to their minimax formulation.
A principled way to optimize the above min-max objective function is to employ an alternative
optimization method where for each fixed pair (θ̂f , θ̂y) the algorithm optimizes over θd until con-

vergence and then with fixed θ̂d the algorithm optimizes the pair (θf , θy) until convergence. In
practice the authors adopt a stochastic approach where at each iteration they sample a mini-batch
instance pairs from the source domain and a mini-batch sample of instances from the target domain.
Then the gradients can be computed correspondingly by computing the objective function using
the current iterate of parameters. Note that there is an caveat that in order to correctly implement
the optimization, the partial derivative ∂Ld(x; θf , θd)/∂θd should be reversed when propagated to
θf . Such reversal operation is implemented as a gradient reversal layer (GRL) as shown in Fig. 1.
In the forward phase the GRL simply works as an identity operator while in the backward phase
the GRL layer inverts the gradient that flow through it by −1.

4.2 Domain Adversarial Auto-encoder

4.2.1 Motivation

DANN is easy to interpret and is well-justified by minimizing two terms in the generalization upper
bound shown in Thm. 1. On the other hand, marginalized stacked denoising auto-encoder (Chen
et al., 2012, mSDA) has been widely validated to be helpful and efficient in domain adaptation by
unsupervised pretraining. It has also been observed experimentally that the performance of DANN
gets further improved when trained with representation learned by mSDA (Ganin et al., 2016).
Both DANN and mSDA are representation learning methods, but their objective functions are
quite different. Hence a natural question to ask is: can we design a unified model that incorporates
the advantages of both models simultaneously, instead of building a pipeline system that first does
unsupervised pretraining and then learns invariant representation?
In this section we shall mainly discuss a unified model such that: 1). It learns representations that
are informative for the main learning task at the source domain. 2). It learns invariant features that
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are indistinguishable between the source and the target domains. 3). It is able to reconstruct the
original input instances. We term the proposed model DAuto. The first requirement corresponds to
a term in the objective function that aims to minimize the empirical classification error at the source
domain. To realize the second goal, we take the same idea as DANN and uses a discriminative
classifier to approximate the minimum domain classification error. Forour third design goal, we
use a stacked auto-encoder to enforce the representations to be robust under injected noise. This
idea is similar to the recent Ladder network (Rasmus et al., 2015) for semi-supervised learning,
where authors augment a supervised learning task with a hierarchy of unsupervised denoising auto-
encoders.
DAuto is based on the above DANN architecture. We augment the DANN model by viewing the
representation learning part of DANN, i.e., the part with parameters θf , as an encoding process.
Then it is quite a natural idea to construct a corresponding decoding process, from which we
can further regularize our objective function to achieve our third goal: the learned representation
should be able to reconstruct the original input. The idea of using auto-encoder (Vincent et al.,
2010) and its variants for unsupervised pretraining is well-known (Erhan et al., 2010; Bengio et al.,
2013). Feature learned from these auto-encoders is usually robust to noise and has been validated
experimentally to be helpful for clustering, etc. However, instead of first training an mSDA to
learn the desired feature representation and then feed it into the DANN, we design our network
structure so that it contain the reconstruction loss as one part of its objective function, which
effectively combines the auto-encoder as one component of the overall network structure.

4.2.2 Model Description

We first show the model architecture of DAuto in Fig. 2. DAuto contains four major components
in its design: the feature learning part (in green) with parameter θf , the main classification part
(in blue) with parameter θy, the domain classification part (in red) with parameter θd and the
unsupervised auto-encoder part (in purple) with parameter θr. The feature learning component
provides a shared representation for all the other parts of the model, and as a result the gradients
from the main classification part, the domain classification part and the auto-encoder part are
combined together to update the parameters of the feature learning part.
More specifically, let Gf (·; θf ) be the feature learning component that maps an input instance
from Rd to a hidden feature representation RD, i.e., Gf (x; θf ) ∈ RD. Similarly, let Gy(·; θy) be
the main classification part, which is a function from RD to the output space, e.g., ∆k when
the prediction contains k classes. Gd(·; θd) now corresponds to the domain classification part of
DAuto, i.e., a function from RD to [0, 1], where the output of Gd(·; θd) measures how confident
the domain classifier is about the event that the input instance comes from the target domain.
Finally, we use Gr(·; θr) : RD → Rd to represent the auto-encoder component (more precisely,
Gr(·; θr) corresponds to the decoding function while Gf (·; θf ) is treated as the encoding function).
As shown as the purple part in Fig. 2, Gr(·; θr) is a “mirror” of Gf (·; θf ): for example, suppose the
representation learning part contains 3 fully-connected layers with number of units 100, 200 and 300
in the corresponding layers. Then the decoding part will contain exactly three layers with 300, 200
and 100 units, respectively. Such design allows us to incorporate the following reconstruction loss
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auto-encoder Gr(·; ✓r)

Figure 2: Figure modified from Ganin et al. (2016). Model architecture of domain adversarial auto-
encoder (DAuto). DAuto contains four parts. The feature learning part (in green) with parameter
θf , the main classification part (in blue) with parameter θy, the domain classification part (in red)
with parameter θd and the unsupervised auto-encoder part (in purple) with parameter θr. The
gradients from the main classification part, the domain classification part and the auto-encoder
part are combined together to update the parameters of the feature learning part.

as a regularizer into the DAuto model:

Lr =
1

2n

n∑
i=1

Lr(xi; θf , θr) +
1

2n

2n∑
i=n+1

Lr(xi; θf , θr)

where we recall the first n samples come from the source domain and the last n samples come from
the target domain. Take the model architecture shown in Fig. 2 as an example. Let x, f (1), f (2), f (3)

and f be the input instance, the hidden vector at the first, second, third and last layer of Gf (·; θf ).

Correspondingly, let f̂ (3), f̂ (2), f̂ (1) and x̂ be the reconstructed hidden features and input instance
in the decoding part Gr(·; θr), then we can build the following reconstruction loss Lr(x; θf , θr):

Lr(x; θf , θr) = ||x̂− x||22 + ||f̂ (1) − f (1)||22 + ||f̂ (2) − f (2)||22 + ||f̂ (3) − f (3)||22 (5)
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In this example we use the squared `2 distance only for illustration, other distance metrics can be
used as well. Note that Lr also depends on θf because all the reconstructed hidden features follow
from the last layer in the encoder. Combining the reconstruction loss into the objective function,
we reach

min
θf ,θy ,θr

max
θd

1

n

n∑
i=1

Ly(xi, yi; θf , θy)− λ
(

1

2n

n∑
i=1

Ld(xi; θf , θd) +
1

2n

2n∑
i=n+1

Ld(xi; θf , θd)
)

+ µ

(
1

2n

n∑
i=1

Lr(xi; θf , θr) +
1

2n

2n∑
i=n+1

Lr(xi; θf , θr)
)

(6)

Again, we emphasize that the first n labeled samples are from the source domain and the last n
unlabeled samples are from the target domain. The above objective function can be optimized
using existing adaptive gradient method like AdaGrad, etc. Note that both the second and the
third terms in (6) can be understood as regularizers that help to learn invariant and robust feature
representations simultaneously. Along with the first term in (6), the objective function seeks to
learn representations that on one hand are informative for our main learning task, while at the
same time are robust and invariant between source and target domains.

4.2.3 Auto-encoder as Marginal Probability

One may ask why adding a reconstruction loss as regularizers into the existing DANN objective
will help domain adaptation? In this section we provide a probabilistic justification showing that
along with the cross-entropy loss, the reconstruction loss can be interpreted as maximizing a joint
probability distribution over both instances and their labels under proper modeling assumptions.

Let ŷ
(k)
i be the k-th output of the softmax classifier with input instance xi, i.e., ŷ

(k)
i = Pr(yi =

k | xi; θf , θy). It is clear that the usual cross-entropy loss corresponds to the negative of the
log conditional likelihood function when the true generating distribution is approximated by the

empirical distribution on data set: −∑k Iyi=k log ŷ
(k)
i = − log Pr(yi = ki | xi; θf , θy), where ki is the

label of xi. The neural network parametrized with θf and θy then gives a conditional distribution
y | x. Now from the Bayesian perspective, consider the joint distribution over all the variables, i.e.,
x, y and all the model parameters. The joint distribution of this model can be described as:

p(x, y, θf , θy, θ̂f , θr) = p(x; θ̂f , θr)p(y | x; θf , θy)p(θf , θy, θ̂f , θr) (7)

where p(θf , θy, θ̂f , θr) is the prior distribution over model parameters. We shall show that by

choosing a proper form of the prior distribution as well as the marginal distribution p(x; θ̂f , θr),
the objective function (6) of our model corresponds to the negative log joint likelihood function
augmented with the domain adversarial regularizer.
Given a set of training instances {xi}ni=1, consider the kernel density estimation parametrized by
two neural networks Gf (·; θ̂f ) and Gr(·; θr):

p(x; θ̂f , θr) ∝
1

nh

n∑
i=1

K

(
x−Gr(Gf (xi; θ̂f ); θr)

h

)
(8)
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where h > 0 is the bandwidth and K(·) is the kernel function. Now consider evaluating the density
function (8) on instance xj from the training set:

log p(xj ; θ̂f , θr) = log

(
1

nh

n∑
i=1

K

(
xj −Gr(Gf (xi; θ̂f ); θr)

h

))

≥ logK

(
xj −Gr(Gf (xj ; θ̂f ); θr)

h

)
− log(nh) (9)

If we choose K(·) to be a specific form of kernel function, e.g., a Gaussian kernel, then (9) can be
simplified as follows:

log p(xj ; θ̂f , θr) ∝ −µ · ||xj −Gr(Gf (xj ; θ̂f ); θr)||22

where µ > 0 is a constant term that depends on the band-width h but not xj . Note that other
choices of kernel functions can lead to different kinds of reconstruction loss, e.g., a Laplace kernel
leads to an `1 measure of the reconstruction loss. The above derivation shows that the recon-
struction loss of an auto-encoder corresponds to a lower bound on the marginal log probability
log p(x; θ̂f , θr) where p(·) is given by a kernel density estimation. It is worth pointing out that the
lower bound in (9) becomes more and more accurate as h → 0 or Gr ◦ Gf becomes close to an
identity function, which is exactly the design purpose of an auto-encoder.
As a result, if we maximize the log of the joint likelihood function log p(x; θ̂f , θr)+log p(y | x; θf , θy)
over labeled instances {(xi, yi)}ni=1 from the source domain and unlabeled instances {xi}2ni=n+1 from
the target domain, we obtain:

min
θ̂f ,θr,θf ,θy

1

n

n∑
i=1

Ly(xi, yi; θf , θy) + µ

(
1

2n

n∑
i=1

Lr(xi; θ̂f , θr) +
1

2n

2n∑
i=n+1

Lr(xi; θ̂f , θr)
)

(10)

The above interpretation not only explains the empirical success of auto-encoders as regularizers
in discriminative tasks, but also provides us a way to take advantage of unlabeled instances in
a principled way. Our derivation also implies the possibility of applying auto-encoder based ap-
proaches in semi-supervised learning, which has recently been explored by Rasmus et al. (2015) in
their Ladder networks.
From Fig. 2, the model parameter θ̂f in the generation process of x and the parameter θf in
discriminative function p(y | x) are shared. We can enforce this constraint by specifying our prior
distribution over model parameters as follows:

p(θ̂f , θr, θf , θy) ∝ p0(θ̂f , θr, θf , θy) · δ(θ̂f − θf )

where p0 is a flat prior and δ(·) is the Dirac delta function. Incorporating this prior into (10), we can
see that (10) is exactly (6) without the domain adversarial term. As a result, the objective function
in (6) can be understood as an implementation of the maximum-a-posteriori (MAP) estimation of
model parameters {θf , θr, θy} augmented with the domain adversarial regularizer.
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5 Experiments

5.1 Experimental Setting

In this section, we conduct experiments to compare DAuto with a variety of methods for domain
adaptation on the Amazon data set. The Amazon data set consists of reviews of products on
Amazon (Blitzer et al., 2007). The task is to predict the polarity of a text review, i.e., whether
the review for a specific product is positive or negative. The data set contains text reviews for the
following four categories: books, DVDs, electronics and kitchen appliances. Each of the product
contains 2000 text reviews as training data, and 3000∼5000 reviews as test data. Each text review
is described by a feature vector of 5000 dimensions, where each dimension correspond to a word in
the dictionary. The data set is a benchmark data that has been frequently used for the purpose
of sentiment analysis (Blitzer et al., 2006, 2007; Chen et al., 2012; Ajakan et al., 2014; Ganin
and Lempitsky, 2015), and is publicly available at http://www.cs.jhu.edu/~mdredze/datasets/
sentiment/. We list the detailed statistics of the Amazon data set in Table. 1.

Table 1: Statistics about the Amazon data set.

Data set Train Test Feature

Books (B) 2000 4465 5000
DVD (D) 2000 3586 5000
Electronics (E) 2000 5681 5000
Kitchen (K) 2000 5945 5000

In view of the four categories in the Amazon data set, there are 16 possible binary classification
tasks, i.e., 〈S, T 〉, where S, T ∈ {B, D, E, K}. Among the 16 possible tasks, 12 of them are valid
domain adaptation settings, while the rest 4 experiments form standard classification setting where
the training and test distributions are approximately the same. Nevertheless, we shall still compare
all the methods described below on all the 16 experiments, mainly to check that a successful domain
adaptation algorithm should be adaptative in the sense when there is no shift between the source
and the target domain, the algorithm should still be able to achieve a good generalization error.
Hence for each source-target pair, we train the corresponding models completely on labeled source
instances with unlabeled target instances. Since each task is a binary classification problem, we use
the classification accuracy on the target domain as our main metric to evaluate the performance of
different models.
We compare DAuto with the following methods:

1. Multilayer Perceptron (MLP). This is the baseline model which ignores the possible shifts
between source and target domains. During training process MLP does not need to have access
to the unlabeled instances from target domains. Throughout all the experiments, we fix the
structure of MLP to have one hidden layer with 500 hidden units. We use AdaDelta (Zeiler,
2012) to train the MLP with a dropout rate (Srivastava et al., 2014) 0.01. We also use weight
decay with coefficient 0.01. The activation function in the hidden layer is the rectified linear
unit (Nair and Hinton, 2010).

12 of 18

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
http://www.cs.jhu.edu/~mdredze/datasets/sentiment/


DAP: Domain Adaptation with Adversarial Neural Networks and Auto-encoders

2. mSDA. mSDA pretrains all the unlabeled instances from both the source and the target
domains to build a feature map for the input space. The constructed representations from
mSDA are used to train a linear SVM classifier as suggestd in the original paper (Chen et al.,
2012). In all the experiments, we set the corruption level to be 0.5 in training mSDA, and
stack 1 layers of denoising auto-encoders. While being a simple model, mSDA forms a very
strong baseline on the Amazon data set that is hard to beat (Ajakan et al., 2014).

3. Ladder Network (Ladder). The Ladder network (Rasmus et al., 2015) is a novel struc-
ture aiming for semi-supervised learning. It is a hierarchical denoising auto-encoder where
reconstruction errors between each pair of hidden layers are incorporated into the objective
function. The Ladder network can have access to the unlabeled instances from target do-
mains as a means to utilize the unlabeled data in a unsupervised way. We implement the
Ladder network as described in the original paper (Rasmus et al., 2015), but again only use
one hidden layer with 500 units. The other experimental setting for Ladder are set to the
same as MLP, i.e., the same activation function, the same dropout rate, etc.

4. Domain Adversarial Neural Network (DANN). DANN is a recent model proposed
for domain adaptation using adversarial training techniques. We detailed its discussion in
Sec. 3. Again, we use a one hidden layer fully-connected network with 500 units as the main
classifier, and we use logistic regression with the hidden layer as input to build the domain
classifier. To approximate the binary loss, we use the cross-entropy loss function as the error
function of the domain classifier. We set λ = 0.001 as the tradeoff parameter between the
main classification loss and the domain classification loss.

For our proposed model DAuto, again, in order to make a fair comparison with MLP, Ladder and
DANN, we use an MLP with only one hidden layer (500 units) as the main prediction component.
As in the DANN model, we use a logistic regression to implement the domain classification part.
We use stacked auto-encoder (without injected noise) to implement the decoding part: the decoding
model is also an MLP with one hidden layer with exactly the same number of units. But we do not
share the weights of the decoding MLP with the encoding one, for the following reason: the encoder
in DAuto is also expected to learn invariant features between these two domains while the decoder
is only responsible for the reconstruction error. In all the 16 experiments, we fix λ = µ = 0.001 as
the tradeoff parameters. Again, we use AdaDelta with mini-batches to train the model. Dropout
rate is set to be 0.7.
We implement all the models ourselves in Python. For neural network based models, we use
Theano (Bergstra et al., 2010) with Keras library to implement them. Whenever possible, we run
our models on GPUs.

5.2 Results and Analysis

We report the classification accuracies on the test data of the 16 pairs of tasks to have a thorough
comparisons among the 5 models in Table. 2. DAuto outperforms all the other baseline methods
on 14 out of 16 tasks, whereas DANN achieves the best test set accuracy on D → E and D → K.
To check whether the accuracy differences between those five methods are significant or not, we
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perform a paired t-test and report the two-sided p-value under the null hypothesis that two related
paired samples have identical average values. We show the p-value matrix in Table. 3 where for
each pair of methods, we report the maximum p-value among the 16 tasks. We note that DAuto
performs consistently better than all the other competitors. Note that the only difference between
DANN and DAuto is the auto-encoder regularizer that forces the feature learning part to learn
robust features, we conclude that DAuto successfully helps to build robust representations.

Table 2: Binary classification accuracies on 16 tasks of 5 models: MLP, Ladder, mSDA, DANN
and DAuto (ours). S → T means that S is the source domain and T is the target domain.

Task MLP mSDA Ladder DANN DAuto

B→B 0.823 0.812 0.817 0.828 0.834
B→D 0.770 0.785 0.764 0.773 0.776
B→E 0.728 0.734 0.735 0.734 0.749
B→K 0.762 0.770 0.775 0.769 0.782

D→B 0.768 0.769 0.757 0.765 0.776
D→D 0.830 0.820 0.832 0.834 0.834
D→E 0.753 0.768 0.784 0.776 0.784
D→K 0.776 0.793 0.802 0.789 0.795

E→B 0.693 0.726 0.683 0.693 0.707
E→D 0.696 0.741 0.715 0.694 0.724
E→E 0.850 0.857 0.854 0.847 0.864
E→K 0.845 0.858 0.848 0.843 0.863

K→B 0.687 0.715 0.694 0.710 0.723
K→D 0.711 0.738 0.731 0.727 0.748
K→E 0.838 0.825 0.843 0.838 0.849
K→K 0.869 0.867 0.874 0.873 0.882

Table 3: p-value matrix between different domain adaptation algorithms. Each entry in the matrix
corresponds to the maximum p-value under a paired t-test on 16 domain adaptation tasks from the
Amazon data set.

MLP mSDA Ladder DANN DAuto
MLP - 5.75e-277 1.99e-49 1.19e-25 1.39e-33

mSDA 5.75e-277 - 6.99e-274 6.99e-274 1.30e-265
Ladder 1.99e-49 6.99e-274 - 1.31e-53 1.62e-51
DANN 1.19e-25 6.99e-274 1.31e-53 - 3.27e-32
DAuto 1.39e-33 1.30e-265 1.62e-51 3.27e-32 -

To show the effectiveness of different domain adaptation algorithms when labeled instances are
scarce, we test the five algorithms on the 16 tasks by gradually increasing the size of the labeled
training instances, but still use the whole test data set to measure the performance. More specif-
ically, we use 0.2, 0.5, 0.8 and 1.0 fraction of the available labeled instances from source domain
during training. A successful domain adaptation algorithm should be able to take advantage of
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Figure 3: Test set performances of MLP, Ladder, mSDA, DANN and DAuto when the size of
training set is gradually increasing from 0.2 to 1.0.

the unlabeled instances from the target domain to help generalization even when the amount of
labeled instances available is small. We plot the results in Fig. 3. As can be seen from Fig. 3, all
the methods, except Ladder, are able to utilize the unlabeled instance from the target domain to
help generalization, when compared with the baseline MLP model. Ladder was originally proposed
for semi-supervised learning, which assumes that the source and the target domains share the same
distribution. This assumption might explain why Ladder does not perform as well as other domain
adaptation methods.

6 Conclusion

We propose a unified network that is able to learn feature representations that are informative
and robust, while at the same time being invariant between source and target domains. Our
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model is motivated by the recent advances in domain adaptation using representation learning
approaches, namely the domain adversarial neural network and stacked denosing auto-encoder.
Our model improves over these two models by incorporating both them into a unified framework.
Such design only incurs little computational overhead while being able to take advantage of these
two complementary approaches. To demonstrate the effectiveness of our model, we conduct detailed
experiments on the Amazon benchmark data set, showing that our model consistently outperforms
the state-of-the-art methods and other competitors as well. It is also worth pointing out that the
underlying idea can also be seamlessly extended to dynamic domain as well, where we see various
applications with time series data.
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