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Abstract

Theories of preferences are concerned with axioms that de-
scribe how people decide or the structure of preference. Al-
though the dominant paradigm has been the set of axioms con-
sistent with utility maximization, several descriptive theories
have been proposed leading to alternative preference struc-
tures, with better results predicting observed choices. Re-
searchers have developed precise tests of their proposed mod-
els, with that testing limited to a priori defined patterns. While
this approach is promising and theory-driven, it potentially
misses structures not previously considered. As a result, pat-
terns of choices are classified as either fitting a known model
or not, with little analysis of the latter. What is needed is an
approach that can determine preference structure from choice
data even when those data are inconsistent with prior mod-
els, suggesting new structures to cognitive researchers or con-
firming old ones. In this paper we demonstrate how to use
graph matching to uncover heterogeneity in the structure of
preference across a population of decision-makers. We pro-
pose a novel non-parametric approach to formally capture the
concept of preference structure using preference graphs, there-
after clustering decision-makers based on graph embedding
methods. We explore the approach with simulated choice data
from the most common classes of economic and psychological
models. We also apply the approach to new empirical imple-
mentations of classic experiments in decisions between risky
prospects and other stated preferences tasks. The approach un-
covers heterogeneity in preference structure across a variety of
dimensions, without requiring any prior knowledge of those
structures.
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Introduction
The study of preferences and the concept of rational choice
have been relevant for cognitive science and artificial in-
telligence research from the early conception of the fields
(H. A. Simon, 1956). Theories of preferences are often con-
cerned with the invariant axioms that describe how people
decide, or the structure of preference. For over a century,
the dominant paradigm has been a set of axioms that are nec-
essary and sufficient for behavior to be consistent with the
maximization of a well-behaved utility function, an idea dat-
ing back to the nineteenth century theorist Jeremy Bentham
(Bentham, 1879). This paradigm requires decision-makers to
be able to consistently rank any set of alternatives that they
come across (Pareto, 1906). This well-behaved description
of preference may work well in simple environments, but it is
not clear how accurately represents preferences in complex,
naturalistic settings. Humans are largely heterogeneous, with

preferences that vary over time, and are often inconsistent
with their own preferences (Tsetsos, Chater, & Usher, 2012).
Large amounts of data are currently available that document
choices people make in naturalistic settings. For example,
there exists information about purchase decisions, movie se-
lections, and transportation patterns. The rise of automation
technologies also poses a challenge to decision researchers
on how to mimic accurately human performance. This trend
calls for new ways to determine insights from human pref-
erences in the presence of large heterogeneity of naturalistic
choices (McFadden, 2001).

The axioms that define well-behaved preferences are both
simple and quite powerful (Von Neumann & Morgenstern,
1944; Arrow, 1951). The most relevant ones state that first, all
alternatives must be comparable, making the preference rela-
tion complete. Second, preferences must be transitive. With
these conditions it is possible to define a rank ordering of the
alternatives according to the decision-maker’s preferences,
and there exists an ordinal utility function that corresponds
to that ranking. Over the years, this dominant paradigm has
not gone without challenge. Researchers in the decision sci-
ences have found that, in many circumstances, preferences
are not always well-behaved. Many descriptive theories have
proliferated to explain deviations of human behavior from
utility maximization. This includes ground-breaking work on
bounded rationality, where decision-makers use short-cuts to
deal with the limits of human cognitive capacities (H. A. Si-
mon, 1972). For example, the cognitive burden of selecting
the best alternative, considering all potential costs and bene-
fits of each alternative, is at best psychologically implausible
(Fischhoff, 2005).

Instead, humans use simple rules or heuristics to cope with
the cognitive burden of selecting the best alternative (Payne,
Bettman, & Johnson, 1993; H. A. Simon, 1972; Gigerenzer,
Todd, ABC Research Group, et al., 1999). For example, one
psychologically plausible way to deal with complex choices
is to simplify the task by choosing based on the attribute
that is most important to the decision-maker, only examining
other attributes if alternatives are sufficiently close on that at-
tribute to be psychologically ”tied”. Tversky’s lexicographic
semiorder is such a process (Tversky, 1969) and can lead to
intransitive behavior. Heuristics are designed to reduce ef-
fort during the choice process (Shah & Oppenheimer, 2008).



While sub-optimal, heuristics can work surprisingly well un-
der time constraints (Gigerenzer et al., 1999). Human heuris-
tic ability has been signaled as the cornerstone of our superior
problem-solving skills (H. Simon & Chase, 1988; Anderson,
1996). As it has been long proposed, recognizing the atomic
components of this heuristics can potentially uncover ways
of programming efficient machines with human-like perfor-
mance in natural environments (Anderson & Lebiere, 2014;
Slagle, 1971). Although recently it has been proposed that
current computer resources allow for the design of systems
that use rational strategies in real time (Gershman, Horvitz,
& Tenenbaum, 2015), heuristics can still provide significant
savings in terms of computation costs and reaction time.

However, there is a blind spot in choice modelling research
that limits our possibilities to discover heuristic structures
(Maturana & Varela, 1987; Ramachandran, 1992). A blind
spot is a region in the retina insensitive to light (Dictionary,
1989). A simple experiment to demonstrate the presence of a
blind spot involves looking closely to an image with a black
cross on left and a black circle on right, while covering the
left eye with the left hand. As we focus our attention on
the black cross and get closer to the image, the black cir-
cle disappears (Maturana & Varela, 1987). The blind spot in
choice modelling is that descriptive theories are apriori de-
fined. Researchers develop precise tests of their proposed
models, with that testing limited to a priori defined patterns.
As a result, patterns of choices are classified as either fitting
a known model or not. For example, thus far structural tests
of preference have been limited to specific patterns known
a-priori, such as weak stochastic transitivity or the triangular
condition (Regenwetter, Dana, & Davis-Stober, 2010). While
this approach is promising and theory-driven, it potentially
misses structures not previously considered. Some decision
process are clearly identifiable a-priori, others might not. We
are looking at the choice process too closely and at the same
time partially blocking our sight by using tools that are not
general enough. What is needed is an approach that can
determine preference structure from choice data even when
those data are inconsistent with prior models, suggesting at
the same time new structures to psychological researchers or
confirming old ones, and lending strength to welfare analysis
or undermining it.

Next we describe our approach. The current research pro-
poses a novel non-parametric model to formally capture the
concept of preference structure using preference graphs, clus-
ters decision-makers based on that structure, and can repre-
sent types of preferences currently not possible in existing
frameworks (e.g. incomparability (Von Neumann & Morgen-
stern, 1944)). Because the approach clusters decision-makers
with the same structural pattern of preferences, we provide
unified method that may account for disparate preference pat-
terns. The paper is structured as follows: we first present our
graph-based model; then we test the method in simulations
and in new empirical implementations of classic experiments
in decisions between risky prospects and other stated prefer-

ences tasks; finally we discuss our results and present limita-
tions of the method.

Discovering preference structure heterogeneity
Preference representation as graphs
Both classical utility models and newer descriptive theories
imply specific patterns of choices, or preference structures.
In this work, we exploit the idea that preference structures
can be represented as preference graphs (Bouyssou & Vincke,
2010). For example, classical utility maximization can be
represented as a completely connected chain (Varian, 1983;
Afriat, 1972). This is, of course, not the only preference
structure. For example, a lexicographic semiorder results in
cyclic preferences when decision-makers change the weights
they apply to attributes of alternatives (Tversky, 1969).

Graphs are a general way to represent binary relations
among elements of discrete sets, including preference rela-
tions (Diestel, 2000; Varian, 1983; Aiolli & Sperduti, 2010;
Bouyssou & Vincke, 2010). Consider a graph G=(V,E) with
vertex set V and edge set E. In a preference graph the vertices
are interpreted as alternatives and edges as binary relations
between alternatives where, for all pairs of alternatives, one
and only one of the following three edges exists between them
(Bouyssou & Vincke, 2010): i) if a � b, the decision maker
strictly prefers a over b, then a→ b and not b→ a (strict
preference or a P b). If instead, b � a, the decision maker
strictly prefers b over a (bPa), then b→ a and not a→ b; ii)
If a ∼ b, the decision maker is indifferent between a and b,
then a−b are connected by an undirected edge (indifference
or a I b). This can also be represented as a is preferred to b
and b to a or a↔ b; and iii) If a is incomparable with b, then
no edge between a and b exists (incomparability or a J b).
Figure 1 describes a graph representation of preferences.

a P b

a

b

a I b

a

b

a J b

a

b
Figure 1: Preference relations in binary choice

An equivalent representation is an adjacency matrix A =
(ai j) ∈ {0,1}nxn where ai j = 1 if (i, j) ∈ EA and B = (bi j) ∈
{0,1}nxn where bi j = 1 if (i, j) ∈ EB, indicating preference
from i to j. Reflexive loops are usually omitted, meaning
the main diagonal of the adjacency matrix has only zeros. In
this work we focus on a particular type of preference graphs,
namely tournaments, where every alternative is compared
and only strict preference is allowed giving a complete di-



rected graph (Gross & Yellen, 2004). The number of ver-
tices in a tournament indicates the order. In the simplest case
we find transitive tournaments (Moon, 2015), where all rela-
tions are strict preferences and there are no cycles. Follow-
ing (Bouyssou & Vincke, 2010), consider a total order giving
a tournament with an adjacency matrix that will show only
zeros below the diagonal. A weak order instead, will allow
indifference between alternatives and hence giving a tourna-
ment with a stepped shape adjacency matrix below the diago-
nal. For an irrational decision maker, cycles will be observed,
giving a tournament with an adjacency matrix that will show
elements above and below the diagonal.

Total order Weak order semi order No order

Figure 2: Tournaments with different order structure. Adja-
cency matrices are colored to ease interpretation with ones in
black and zeros in grey

Another representation is a format used by Moon (Moon,
2015), where graphs are drawn based on their score vector,
which is the number of times each alternative is preferred
over other alternatives. For example, with four alternatives,
the maximum score is 3 (an alternative that is preferred to
all others), and the minimum is zero (an alternative preferred
to no others). A score vector of s = [3,2,1,0] is a complete
ranking of the alternatives, or a chain. It is drawn by sort-
ing the score vector from highest score at the top to lowest
score at the bottom, then adding down arrows from top to
bottom. If arrows are omitted (to avoid clutter), this means
that the upper alternative is preferred to the lower alterna-
tive. Inconsistencies are denoted by upward arrows, where an
alternative with a lower score is strictly preferred to an alter-
native with a higher score. As shown in Figure 3, there are
exactly 4 non-isomorphic structures for tournaments of four
alternatives (Davis, 1954): a chain, a cycle among the top 3
alternatives, a cycle among the bottom 3 alternatives, and a
single long cycle.

Notice that these structures have very different implica-
tions for decision-analysis. Given a choice between any sub-
set of four alternatives, a decision-maker with a chain pro-
vides a ranking consistent with the global ranking over four
alternatives. A decision-maker with a cycle at the top can
consistently rank only the worst alternative, and likewise, the
decision-maker with a cycle at the bottom can consistently
rank only the best alternative. A decision-maker with the long
cycle has a consistent ranking over any subset of alternatives,
but no global ranking.

Figure 3: Tournaments on four alternatives. The score vectors
are: chain s = [3,2,1,0], cycle at top s = [2,2,2,0], cycle at
bottom s = [3,1,1,1], long cycle s = [2,2,1,1].

Preference graph similarity
Our primary analytical tool is a method of calculating the dis-
tance between graphs. Formally, a common distance met-
ric between two graphs G1 = (V1,E1) and G2 = (V2,E2),
is the minimum number of edges that need to be rear-
ranged to make them isomorphic, known as the Hamming
distance dH(G1,G2) = ||vec(G1) − vec(G2)||1 (Hamming,
1950). Decision-makers that have a small Hamming distance
between their preference graphs tend to choose similar alter-
natives, or have similar preference content. For a sample of
n individuals, we can store the Hamming distance between
all pairs of decision-makers in a symmetric n× n dissimi-
larity matrix D. From D, a weighted dissimilarity kernel K
can be constructed, with values between zero and one (Kevin,
2012). We use standard graph similarity tools to identify clus-
ters of graphs with similar content. This approach is formally
equivalent to Coombs’ multidimensional unfolding (Coombs
& Kao, 1960).

Preference structure cannot be obtained from these Ham-
ming distance computations. For example, two chain prefer-
ence graphs of equal size with opposing preference content
will have a Hamming distance equal to the total number of
unordered pairs of vertices

(n
x

)
. Even though they are both

chains (identical structures), the Hamming distance indicates
that they are as dissimilar as possible. Thus, we need a met-
ric that indicates that these graphs have the same structure
and hence that there is a structural distance of zero between
them. Two graphs have a structural distance of zero if they
are isomorphic (Aflalo, Bronstein, & Kimmel, 2015), mean-
ing there is a bijection f : V1 → V2 such that the edges of
all pairs of vertices u,v ∈ V1 in G1 have the same edges for
f (u), f (v) ∈ V2 in G2 (and vice versa). An automorphism of
a graph G is a graph that is isomorphic to G, and the auto-
morphism group Aut(G) is all of the graphs that are isomor-
phic to G (Babai & Luks, 1983). We can test whether two
graphs are isomorphic by checking whether any of their au-
tomorphisms are isomorphic. This is a well studied problem
in computer science, called the graph isomorphism problem
(Babai & Luks, 1983). The minimum Hamming distance
between two graphs across all combinations of their auto-



morphisms gives their structural distance dS (Butts & Car-
ley, 2005): dS(G1,G2) = min(dH(Aut(G1),Aut(G2))). If two
graphs are similar (but not isomorphic), their structural dis-
tance should be small. Clusters of decision-makers with small
distances between each other then indicate a common prefer-
ence structure in a population of decision-makers, partially
masked by noise.

Inexact graph matching
With a few alternatives the structural distance between graphs
can be quickly calculated using exhaustive search. As the
number of alternatives grows, exhaustive search becomes un-
feasible. In general, the problem of calculating structural dis-
tance is NP-hard (Aflalo et al., 2015), requiring approxima-
tion techniques for large graphs with more than 8 alternatives.
To make this approximation feasible, we recast the structural
distance calculation as an inexact graph matching problem
(Livi & Rizzi, 2013), where the objective is to find the per-
mutation matrix P∗ over the space of permutations that makes
two adjacency matrices A and B as similar as possible. The
objective function is (Aflalo et al., 2015; Livi & Rizzi, 2013;
Vogelstein et al., 2011):

P∗ = argmin
P∈P

f (P) = disA→B(P) = ||A−PT BP|| (1)

where A,B are the adjacency matrices for the preference
graphs of two decision-makers, and P ∈ P is in the set of
permutation matrices P . If the chosen norm is the Frobenius
L2 norm squared the problem is know as quadratic assign-
ment (QAP) with non-deterministic polynomial time com-
plexity (Koopmans & Beckmann, 1957). Given that solu-
tion set P is not convex, a common approach is to relax the
non-convex restriction Π ∈ P, replacing P by its convex hull
D , where D is the set of doubly stochastic matrices (all en-
tries greater than equal to zero and each row and column
sums to 1). After some algebra, this relaxation leads to a
quadratic program (QCV) solvable in polynomial time (Liu,
Qiao, Jia, & Xu, 2014; Aflalo et al., 2015). Nevertheless, this
method can lead to inaccurate results (Aflalo et al., 2015). In-
stead, we followed Vogelstein’s approach (rGM) (Vogelstein
et al., 2011). We replaced the objective function f (P) by
the identity−tr(APBT PT ) which leads to a non-convex prob-
lem where ∇2 f (P) = B⊗A+BT ⊗AT is not positive definite
(Vogelstein et al., 2011). (Vogelstein et al., 2015) proposed to
solve this problem sequentially with Frank-Wolfe algorithm
(Frank & Wolfe, 1956). We initialized the optimization with
QCV solution (Lyzinski et al., 2016).

Clustering
Once content and structural distances ds are determined for
preference graphs of each pair of decision-makers, the matrix
of pairwise structural (or hamming) distances between the
graphs of decision-makers can be analyzed using traditional
clustering techniques to classify decision-makers into groups
with similar preference content and structure. Nonetheless,

nothing ensures that clusters from content and structural dis-
similarities will not overlap. Therefore, we need to account
for both structural and content dissimilarities simultaneously
in the clustering stage. To do so we first embed each dis-
similarity matrix in a lower dimensional space and hereafter
we bound columns of the resulting embeddings in an n× d
matrix with information about content and structure for each
decision-maker, with d the sum of dimensions of the embed-
dings of both dissimilarity matrices or embedding fusion.

We begin by using classical multidimensional scaling to
project each distance matrix onto a lower dimensional space
(Torgerson, 1952), but based on its superior performance we
finally used an autoencoder initialized with weights found us-
ing a Restricted Boltzmann Machines (Hinton & Salakhutdi-
nov, 2006; Wang, Yao, & Zhao, 2016). An autoencoder is
a neural network model that maps or encodes input space x
into a lower dimensional space h(x) at its output layer and
then reconstructs or decodes the original input space as x̂(h)
(Goodfellow, Bengio, & Courville, 2016).

Therefore, we first convert dissimilarities to probabilities
with a radial basis function kernel with fixed σ as the me-
dian of the statistic Di j (Kevin, 2012; Karatzoglou, Smola,
Hornik, & Karatzoglou, 2016). Next we trained an autoen-
coder to embed each n× n kernel dissimilarity matrix in a
lower dimensional space n× d. We used a non-linear acti-
vation function with a sigmoid transformation for both the
encoder h(x) = Wx+ b and the decoder x̂ = Wh+ c, a 0.1
learning rate and 1,000 epochs. An autoencoder with a non-
linear activation function can be understood as a non-linear
version of principal component analysis (Goodfellow et al.,
2016). An autoencoder seeks to minimize reconstruction er-
ror as (Goodfellow et al., 2016):

min
W,b,c

l(x) =−∑
j

x jlog(x̂ j)+(1− x j)log(1− x̂ j) (2)

Figure 4 presents an schema for the autoencoder net-
work. We selected the number of dimensions in the em-
bedding d that gave the lower training reconstruction er-
ror using the elbow method. We pretrained the model with
a Restricted Boltzmann Machine (Hinton & Salakhutdinov,
2006). A Restricted Boltzmann Machine is an undirected
energy-based graphical model where the visible inputs x are
matched with hidden units in a lower dimensional space h.
A Restricted Boltzmann Machine is fitted minimizing log-
likelihood function using contrastive divergence algorithm as
(Hinton, 2002):

min
θ={W,b,c}

l(θ) =−∑ log(e−F (x)/Z) (3)

F (x) is the free energy as F (x) = −log(∑h e−E(x,h;θ)),
with energy function E(x,h;θ) = bT x+cT h+xTWh, Z a nor-
malizing constant Z = ∑x e−F (x) and W , b and c are model
weights. We tested our method against other linear and non
linear embedding methods with data sets commonly used
for testing clustering methods with superior performance in



Figure 4: The following autoencoder schema describes our method. The original dissimilarity matrix is encoded into a lower
dimensional space minimizing reconstruction error (Wang et al., 2016).

all cases. Finally, to achieve a robust solution, we used k-
medians algorithm to determine clusters allocation (Singh,
Yadav, & Rana, 2013). Therefore, to determine the clusters
we solve the following optimization problem:

minJ(γ,µ) =
n

∑
i

k

∑
j

γi j||xi−µ j||1 (4)

We initialized the algorithm with centroids from a prior hi-
erarchical k-means solution (Hartigan & Wong, 1979; Lucas,
2014; Arai & Barakbah, 2007). Here γ is a binary alloca-
tion matrix, k is the apriori defined number of clusters, C is
the clusters allocation and µ the vector with medians for each
group. We used the gap-statistic to determine the number of
clusters k (Tibshirani, Walther, & Hastie, 2001). If necessary,
clusters are merged to provide a more general solution.

Preference structure in simulation
We first describe the results of simulations designed to illus-
trate the method. In our simulation we evaluate our model’s
ability to separate a popular psychological model, the lexi-
cographic semiorder (Tversky, 1969), from the more tradi-
tional expected utility maximization (Von Neumann & Mor-
genstern, 1944). As an example, consider choosing between
pairs of gambles shown in Table 1 from Tversky’s classic pa-
per on intransitive preferences (Tversky, 1969), along with
three additional gambles (f-h) added to increase graph match-
ing difficulty.

Subjects that chose based on expected value should pre-
fer a � b � c � d � e, and should have a complete tran-
sitive order. Tversky hypothesized that someone following
a lexicographic semiorder decision rule would first choose
based on differences in gambles probabilities. If the dif-
ference in probabilities is small enough, the decision maker
would switch to the next attribute and choose based on differ-
ences in payoffs. This would result in an intransitive sequence
a� b� c� d � e and e� a.

To demonstrate that our approach can reliably cluster
decision-makers into groups based on the structure of their
preferences, we generate graphs for 100 decision-makers, 37
with lexicographic preferences, 33 with risk neutral expected

Table 1: Gambles from Tversky’s (Tversky, 1969) experi-
ment 1 (a-e) plus three added for the simulation (f-h)

Gamble Probability Payoff Expected Value ($)
a 7/24 5.00 1.46
b 8/24 4.75 1.58
c 9/24 4.50 1.69
d 10/24 4.25 1.77
e 11/24 4.00 1.83
f 12/24 3.75 1.88
g 13/24 3.50 1.894
h 14/24 3.25 1.895

value maximizer preferences, and 30 that would choose at
random. We first mapped the simulated choices in an adja-
cency matrix, then computed dissimilarity matrices between
adjacency matrices and finally we identified clusters of graphs
with similar preference content and structure. Figure 5 sum-
marizes our method. As exposed in Figure 5 k-means cluster-
ing (Hartigan & Wong, 1979) on a two-dimensional embed-
ding separates successfully lexicographic semiorders from
those who are expected value maximizers.

We first assumed subjects will choose deterministically. A
deterministic decision rule will provide structures that are
quite easy to distinguish from others because, under all cir-
cumstances, the same graph structure will emerge. Nonethe-
less, noise in the decision process can make preference struc-
tures harder to distinguish. For example, in Figure 6 even
though a decision rule such as expected value maximiza-
tion is used, intransitive behavior is still observable if al-
ternatives are harder to compare, confounding the later de-
cision rule with random choice. In Figure 6, the first row
presents structural distance dissimilarity matrix for 100 simu-
lated decision-makers with increasing noise for expected util-
ity maximization as EV +N(0,σ2). The second row, presents
the sorted dissimilarity matrix by final clustering. The third
row, presents a two-dimensional embedding of the dissimilar-
ity matrix.

.



Figure 5: The schema summarizes the four steps of our method for a simulated sample of 100 decision-makers. First, we
represent choices as preference graphs. Next, we compute dissimilarities on both content and structure. Further, we estimate a
lower dimensional embedding for each dissimilarity matrices. Finally, we find clustering allocations.
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Figure 6: First row, structure dissimilarity matrix with in-
creasing noise for expected utility maximization. Second row,
structure dissimilarity matrix sorted by final clustering. Third
row, structure dissimilarity matrix two-dimensional embed-
ding (lexicographic purple squares, random choice red circles
and expected value grey triangles).

An empirical test of the model
We tested our method in three most relevant tasks: an exten-
sion of (Tversky, 1969) transitivity task, a selection of classic
anomalies observed in choices between risky prospects and
a policy-focused multi-attribute task to study preferences for
CO2 mitigation (Sergi, Davis, & Azevedo, 2017). For each
task, we recruited 200 participants using Amazon Mechani-
cal Turk (Mturk). Inclusion criteria were the following: age
of at least 18 years, IP address in the U.S. and completion
of more than 100 hits with an approval rate of 95% or higher.
We provided a payment of $1 per participant and a $0.5 bonus
if the participant answered an attention check correctly. The
attention question was a choice set with a deterministically
dominated alternative. We detected six, seven and two clus-
ters in each of tasks. In Figure 7 we present a two dimen-
sional visualization for dissimilarity embedding fusion results
using t-Distributed Stochastic Neighbor embedding (t-SNE)
(Maaten & Hinton, 2008). Clusters are indicated in differ-
ent colors and shapes. Voronoi polygons are plotted to show
cluster separation. Next we present a detailed analyzes of our
results in each task.

Transitivity task
We first extended Tversky’s classic experiment examin-
ing lexicographic semiorders (Tversky, 1969). Participants
choose between the pairs of gambles shown in Table 1 from
Tversky’s classic paper on intransitive preferences (Tversky,
1969), along with the three gambles (f-h) considered in the
simulation experiment and two additional gambles (i-j) where
a higher probability is negatively correlated with a higher ex-



Figure 7: Visualization of dissimilarity embedding fusion results in two dimensions with t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Maaten & Hinton, 2008). Clusters are indicated in different colors and shapes. Voronoi polygons are
plotted to show cluster separation.

pected value (in i there is 15/24 chance of winning $3, and
in j a 16/24 chance of winning $2.75). Probabilities were
presented as pie charts without numeric information. An ex-
ample of the choice task is presented in Figure ??.

We presented participants with all pair combinations (45
pairs) in three repetitions with the order randomized. 95%
of the 200 participants was paid the bonus. Clustering by
content and structure six clusters emerged: five groups with
chains and one group with multiple cycles. Structural and
content heterogeneity, rather than homogeneity, is the pri-
mary takeaway. Chain graphs, are the most popular pat-
tern. Figure 8 shows the expected adjacency matrices for
the preference graphs in each cluster. Alternatives were pre-
arranged so a lower triangular adjacency matrix indicates
choices based strictly on probabilities and an upper triangular
adjacency matrix indicates choices based strictly on payoffs.

(1) 13% (2) 22% (3) 30% (4) 9% (5) 10% (6) 16%

Figure 8: Weighted expected adjacency matrix in each clus-
ter for the transitivity task. We used a color scale to easy
ease interpretation with adjacency matrices colored from one
in darker tones and zeros in lighter tones. We also present
moon graphs to explicitly differentiate preference structure.
The proportion of the sample in each cluster is presented in
the last row.

To further analyze the obtained clusters we used multi-
nomial logit models to analyze choices (MNL) (McFadden,
1973). An MNL model assumes the probability that an indi-
vidual chooses alternative i ∈ J depends linearly on a utility
function Vi as Pi = eVi/∑ j∈J eV j (McFadden, 1973). We pro-
posed three potential decision rules for the task: maximize
expected value Vi = β EV, maximize probability of winning
Vi = β P(winning) and maximize payoffs Vi = β Payoff. In
Table 3, we fitted a binary logit model with the different deci-
sion rules as linear utilities in each of the discovered clusters
(McFadden, 1973). Figure 9 shows logit probabilities in each
case. For all clusters a decision rule based on a single attribute
(either probabilities or payoffs) is more likely than an ex-
pected value rule. Decision-makers in clusters 1,2 and 3 pre-
ferred the alternative with a higher probability in 87%,96%
and 100%. It is possible that this clusters respond to the
same decision rule with differences in discriminant ability.
We must highlight that given that probabilities are not numer-
ically stated, recognizing the alternative with a higher proba-
bility in all problems as in cluster 3 requires a superior classi-
fication skill. We decided to merge this clusters in one group.
Decision-makers in cluster 4 consistently chose the alterna-
tive with a higher payoff 93% of times, indicating a single
attribute decision rule based on payoffs is a good representa-
tion of the choice process. Clusters 5 and 6 seem to respond
to a different decision process where decisions are based on
probabilities, but other elements are weighted in the decision.
More exploration is needed to determine if participants in the
later two clusters are following some sort of lexicographic
strategy or we observed a new undocumented structure. In
cluster 6 multiple cycles are observed. The proportion of
choices in cluster 6 favoring the option with the higher prob-
ability is significantly distinct from 50% ruling out random



choice. Although details of the different choice rules remain
uncovered, we observed a clear tendency to choose based on
probabilities (Lichtenstein & Slovic, 1971). It seems the data
is more consistent with a lexicographic order (up to noise) in
the sense of (Fishburn, 1971) than a lexicographic semiorder
as proposed by (Tversky, 1969). (M. H. Birnbaum & Gutier-
rez, 2007) documented similar findings.

Table 2: Linear utility models per cluster. l(s): log-likelihood
model with a single parameter, l(EV): log-likelihood model
expected value rule, P(p): proportion choosing the alternative
with a higher probability of winning.

Cluster Content β̂ l(s) l(EV) P(p) N (%)
1 Probs 10∗∗∗ -542 -621 87%∗∗∗ 26 (13%)
2 Probs 23∗∗∗ -473 -773 96%∗∗∗ 44 (22%)
3 Probs 111∗∗∗ -30 -717 100%∗∗∗59 (30%)
4 Payoff 3∗∗∗ -284 -382 7%∗∗∗ 18 (9%)
5 Probs 5∗∗∗ -558 -586 71%∗∗∗ 20 (10%)
6 Probs 0.3∗ -1,029 -1,029 54%∗∗∗ 33 (16%)

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 9: Logit probabilities P(A) of choosing the alternative
with a higher probability of winning (A) per cluster. Clusters
1, 2 and 3 respond to the same decision rule up to noise, so
we merged them. While decision-makers in clusters 1, 2 and
3 chose based on the probability of winning, decision-makers
in cluster 4 chose maximizing the payoff. Clusters 5 and 6,
respond to a different decision process.

CO2 task
Policy-focused researchers have used multi-attribute discrete
choice models to estimate policy-relevant quantities for their
specific problems, such as the market share of existing and

new products (Herriges & Kling, 1999; Greene, 2012), sub-
stitution patterns (Hensher, Rose, & Greene, 2015), implicit
discount rates (Min, Azevedo, Michalek, & Bruine de Bruin,
2014), willingness-to-pay (McFadden, 1999; Helveston et
al., 2015), and consumer’s surplus (Small & Rosen, 1981;
Williams, 1977). To study the benefits of our method, we
collected new data based on work done at Carnegie Mellon
done by (Sergi et al., 2017). (Sergi et al., 2017) designed an
experimental paradigm to estimate willingness to pay values
for CO2 emission reductions. In our extension of (Sergi et al.,
2017) experiment, participants must trade-off between higher
(or lower) impacts of electricity generation on climate change
and a higher (or lower) electricity bill among the following
alternatives (CO2, Bill): a (-30%, 20%), b (-30%, 5%), c (-
25%, 4%), d (-20%, 3%), e (-15%, 2%), f (-10%, 1%), g
(30%, -20%), h (30%, -5%). An example of the choice task is
presented in Figure ??. The levels of each scenario were se-
lected in order to discover lexicographic semiorder behavior
with electricity bill as first priority. We presented participants
with all pair combinations with no repetitions (28 pairs). Al-
ternatives were prearranged so a lower triangular adjacency
matrix indicates choices based strictly on bill and an upper
triangular adjacency matrix indicates choices based strictly
on CO2. 97% of the 200 participants pass the attention check.

As shown in Figure 10, seven clusters emerged, five groups
with chains structures and two groups with multiple cycles.
We classified participants in three groups regarding prefer-
ence content: 1) Greens (focused mainly on CO2) and 2)
Bills (focused mainly on costs) and 3) Cycles were prefer-
ences are unclear. While in cluster 1, decision-makers chose
strictly based on a lower electricity bill, in clusters 2 and
3 decision-makers are willing to trade-off a higher bill for
improvements in environmental quality. Decision-makers in
cluster 4 strictly focused their choices on lower CO2 emis-
sions. Although decision-makers in clusters 5 and 6 also fa-
vored the environmental attribute, it seems there is a thresh-
old in terms of higher cost they are not willing to cross. In
exchange, decision-makers in cluster 7 show multiple cycles
and are less certain of what they want.

Calculation of willingness to pay presumes that prefer-
ences are well behave and a cardinal utility function underlies
a decision-maker’s choices. As a result, researchers typically
assume a structure such as a strong utility function (a cardi-
nal utility function plus noise (Block, 1974; Luce & Suppes,
1965; McFadden, 1975, 1976, 1973)). This includes vari-
ous twists on the generalized extreme value model (which
includes the multinomial logit and nested logit) (McFadden,
1997), and the mixed logit model (Revelt & Train, 1998). As
we can observe in Figure 10 a significant proportion of the
sample (28%) do not have well-behaved preferences. Fur-
thermore, two groups although with a chain structure (24%)
respond to a lexicographic order and cannot be represented by
a utility function (Mas-Colell, Whinston, Green, et al., 1995).

In the naive approach, a modeler would fit a single multi-
nomial logit model with the full sample (McFadden, 1997).



(1) 18% (2) 8% (3) 13% (4) 6% (5) 14% (6) 25% (7) 15%

Figure 10: Weighted expected adjacency matrix in each clus-
ter for the CO2 task. We used a color scale to easy ease inter-
pretation with adjacency matrices colored from one in darker
tones and zeros in lighter tones. We also present moon graphs
to explicitly differentiate preference structure. The proportion
of the sample in each cluster is presented in the last row.

Willingness to pay corresponds to the marginal rate of sub-
stitution (MRS) between attribute k and the cost of each al-
ternative MRSkc =

∂ui
∂xk

/ ∂ui
∂ci

. When a linear in attributes utility
function is assumed, it would result in the following speci-
fication: Vi = −8.3 ·Bill− 4.5 ·CO2. Hence, willingness to
pay (WTP) corresponds to the ratio of coefficients leading
to WT P = 0.3 ·−4.5/− 8.3 = 0.16 % increment in monthly
electricity bill for a 30% percent reduction in CO2 emis-
sions. The result, at first sight might seem plausible. A
more sophisticated modeler could think there is segments in
the sample with different preferences. If we presume there
are two groups in the sample, a Latent class model (LC)
(Greene & Hensher, 2003) would produce two linear util-
ity functions: V 1

i = −6.6 ·Bill + 0.7 ·CO2 (π1 = 33%) and
V 2

i = −16.1 · Bill − 11.8 ·CO2 (π2 = 67%), with WT P1 =
−0.03 and WT P2 = 0.22. Here the second group is will-
ing to pay to hurt the environment, which seems improba-
ble. In the LC model, individuals were assigned to differ-
ent classes q ∈ {1,2}, with Pi/q = eV q

i /∑ j∈J eV q
j the proba-

bility of choosing alternative i ∈ J given class q and πq the
probability that an individual belongs to class q. Hence,
Pi = π1 ·Pi/1 + π2 ·Pi/2. In Table 3 we present results from
different linear models in each of the discovered clusters.

Table 3: Willingness to pay per cluster

Cluster Content β̂CO2 β̂Bill WTP N
1 Bills 1.5∗∗ -12.5∗∗∗ -0.04 37 (18%)
2 Bills -5.1∗∗∗ -9.1∗∗∗ 0.17 17 (8%)
3 Bills -7.9∗∗∗ -13.8∗∗∗ 0.17 26 (13%)
4 Greens −9.2∗∗∗ -3.4 0.81 12 (6%)
5 Greens -15.6∗∗∗ -20.4∗∗∗ 0.23 28 (14%)
6 Greens -27.9∗∗∗ -37.7∗∗∗ 0.22 50 (25%)
7 Cycles -0.2 -3.4∗∗∗ 0.02 30 (15%)

As shown Table 3, Greens in cluster 4 are willing to pay
a higher amount to the one accounted in the first LC model.
In exchange, Bills in cluster 1 hold a willingness to pay close
to zero showing no compromise to protect the environment.

This results suggests a lexicographic order behavior in both
groups, with decision-makers focusing the decision only in
one attribute (Fishburn, 1971). We observed a compensatory
behavior in clusters 2, 3, 5 and 6, where decision-makers are
willing to make trade-offs between the two attributes, with a
similar willingness to pay in all groups. We observed mul-
tiple cycles in both cluster 3 and 7. We cannot confirm if
cycles represent some sort of lexicographic semiorder be-
havior (Tversky, 1969) or a different uncovered structures.
Further studies must be undertake in order to better under-
stand choice strategies in those groups. In Figure 11 we
present slopes for both attributes (bill and CO2) again assum-
ing a weighted additive linear utility model with no intercept
as Vi = βBill ·Bill + βCO2 ·CO2. Given their similarities we
merged clusters 2 and 3; and clusters 5 and 6. Decision-
makers in cluster 1 are insensitive to changes CO2, whereas
decision-makers in cluster 4 are insensitive to changes in elec-
tricity bill. Decision-makers in groups with merged clusters
M(2,3) and M(5,6), are sensitive to changes in both attributes
with different levels of intensity. Decision-makers in cluster
7 are not sensitive to changes in any of the attributes, possibly
choosing at random.

Bill coefficients CO2 coefficient

Figure 11: Slopes for both attributes assuming a weighted
additive linear utility model with no intercepts (Vj = βbill ·
Bill−βCO2 ·CO2). Given their similarities we merged clusters
2 and 3; and clusters 5 and 6.

Anomalies task
Researchers have examined how decision-makers choose
among sets of gambles, finding a series of anomalies that
challenge the descriptive validity of expected utility theory.
The lexicographic semiorder (Tversky, 1969) and Prospect
Theory (Kahneman & Tversky, 1979; Tversky & Kahneman,
1992) are two of the most successful in this class. Other re-
searchers have proposed alternative models, including the pri-
ority heuristic (Brandstätter, Gigerenzer, & Hertwig, 2006),
transfer of attention exchange (M. H. Birnbaum & Chavez,
1997; M. Birnbaum, 2008), decision field theory (Busemeyer
& Townsend, 1993; Roe, Busemeyer, & Townsend, 2001),
and more recently BEAST model (Erev, Ert, Plonsky, Cohen,



& Cohen, 2017). Each aims to synthesize well-established
deviations from rationality into a parsimonious model. A re-
cent choice modeling competition focusing on the BEAST
model (Erev et al., 2017), identified a set of gambles to test
the presence of the main anomalies detected in descriptive
choice. The gambles themselves provide a rich testbed for
our approach, as they can expose a variety of patterns that
have been previously examined, as well as the possibility of
observing new patterns that may have been overlooked. In
the experiment, we used 11 gambles with 55 pairs in three
repetitions with the order randomized.

The anomalies tested in our experiment comprised five
anomalies used to develop Prospect Theory (Kahneman &
Tversky, 1979), namely the 1) certainty effect, 2) the reflec-
tion effect, 3) overweighting of rare events, 4) loss aversion
and 5) risk aversion. In this case, only 55% of the sample
pass the attention check. In Figure ?? we present an choice
set example. In Table 4 we present the alternatives in the ex-
periments and the expected preference relation for all anoma-
lies. When we clustered participants, two groups emerged.
As shown in Figure 12 both groups present a chain structure
in expectation. Nonetheless, decision-makers seemed less
consistent than in the first two tasks. We must acknowledge
that given that gambles in this task were designed to produce
choice anomalies it is reasonable to observe irrational behav-
ior. In Table 5 we present the proportion of decision-makers
matching the anomalies in each cluster. We could not repli-
cate the certainty effect, neither the reflection effect, nor over-
weighting of rare events. (Erev et al., 2017). Overall behavior
in both groups is very similar. Further inquiries are needed to
fully explain the observed choice patterns.

Table 4: Gambles based on (Kahneman & Tversky, 1979;
Erev et al., 2017). In the column labeled as P, we present
the proportion of participants with anomalous behavior. Pro-
portion P, should be above 0.5 in all cases to match previous
findings (Erev et al., 2017).

Alt p.1 o.1 o.2 Anomalies P
a 1 3,000 0 Certainty (a � b) 0.7
b 0.80 4,000 0 Certainty (a � b)
c 0.25 3,000 0 Certainty (d � c)
d 0.20 4,000 0 Certainty (d � c) 0.3
e 1 -3,000 0 Reflection (f � e)
f 0.8 -4,000 0 Reflection (f � e) 0.3
g 1 50 0 Overweight (h � g)
h 0.01 5,000 0 Overweight (h � g) 0.3
i 1 0 0 Loss aversion (i � j) 0.7
j 0.5 1,000 -1,000 Loss aversion (j � i)
k 0.5 6,000 0 Risk aversion (a � k) 0.3

We extended our analysis using latent class models
(Greene & Hensher, 2003). We model choices as an ensem-
ble of four decision rules (Erev et al., 2017): R1) maximize
expected value and minimize variance (EV) (Von Neumann
& Morgenstern, 1944; Levy & Markowitz, 1979); R2) maxi-

(1) 45% (2) 55%

Figure 12: Weighted expected adjacency matrix in each clus-
ter for the anomalies task. We used a color scale to easy ease
interpretation with adjacency matrices colored from one in
darker tones and zeros in lighter tones. We also present moon
graphs to explicitly differentiate preference structure. The
proportion of the sample in each cluster is presented in the
last row.

Table 5: Proportion matching expected anomalies per cluster.
(1) Certainty effect, (2) Reflection effect, (3) Rare event over-
weighting, (4) Loss aversion, (5) Risk aversion, N = Sample
size

Cluster (1) (2) (3) (4) (5) N

All 0.2 0.2 0.3 0.7 0.7 200 (100%)
1 0.2 0.3 0.4 0.6 0.6 89 (45%)
2 0.2 0.1 0.3 0.7 0.8 111 (55%)

mize the probability of a better outcome (PB) (Venkatraman,
Payne, & Huettel, 2014); R3) maximize a weighted addi-
tive function of outcomes (WA) (Payne et al., 1993); and
R4) maximize the probability of winning the high outcome
(PW) (Erev et al., 2017). Again we modeled the probabil-
ity of choosing alternative i ∈ J with a logit model as Pi =

∑Rq∈R πRqPi/Rq , with πRq the likelihood that an individual uses
decision rule Rq ∈ R. In Figure 13 we show results from our
ensemble model. We present the proportion of participants
assigned to each decision rule defined as maxRq P(Rq/Y = y)
for all 55 problems. There is no noticeable differences be-
tween both clusters with probability of a better outcome as
most likely decision rule in most problems. The two clusters
belong to the same decision process and could be merged.

Discussion and future work
In this paper, we demonstrate how to use graph match-
ing to uncover heterogeneity in the structure of preference
across a population of decision-makers and thereafter cluster
decision-makers based on graph embedding methods. We ex-
plore the approach with simulated choice data from the most
common classes of economic and psychological models. We
also apply the method to new empirical implementations of



Figure 13: Latent class model results. Proportion per decision rule from posterior distribution P(Rq/Y = y). Decision rules are:
WA = weighted additive (outcomes), PB = P(Better outcome) and EV = expected value plus variance.

classic experiments in decisions between risky prospects and
other stated preferences tasks. The approach uncovers het-
erogeneity in preference structure across a variety of dimen-
sions, without requiring any prior knowledge of those struc-
tures. Both the proposed method and its results have impor-
tant implications for researchers in the psychological and eco-
nomic sciences as it does not depend on apriori defined theo-
ries, only the pattern of choices.

As shown in the three empirical tasks, we exploited the reg-
ularities in choice patterns to identify individuals using a sim-
ilar choice rule without prior assumptions. Our model is able
to separate patterns consistent with utility theory from those
better described by other descriptive theories such as lexico-
graphic order, where decision-makers are choosing based on a
single attribute. We also can separate decision-makers show-
ing multiple cycles. The prevailing notion in the decision-
sciences is that decision-makers are either rational or irra-
tional. Our results suggest that this is not the case. Some
decision-makers seemed to know exactly what they want
with a chain structure, while others are less certain. Some
decision-makers can order almost every alternative except the
bottom few. Others struggle to order the best alternatives.
Still others have so many inconsistencies that their choices
can hardly be considered to represent preferences at all. Is yet
to be confirmed if cyclic preference graphs might be explain
by insensitivity to changes in attribute levels or by differences
in discriminant ability.

We tested if cluster information can increase predictive ac-
curacy. We used a logistic regression model with linear util-
ity function for all three tasks and we simulated 1,000 boot-
strapped samples from our survey data to construct confi-
dence intervals. We split each bootstrapped sample in a train
set (66%) and test set (34%). Accuracy is significantly higher
if we use a factor variable with the clusters as an interaction
term. A likelihood ratio test also shows that the model with
a factor variable for clusters is superior to a pooled model
(p-value < 0.001). The learned clusters contain relevant in-
formation of the choice process.

In the transitivity task the vast majority of the sample

(74%) uses a single attribute (up to noise) to make the choice,
undermining the plausibility of other more complex rules like
expected value calculations. Decisions based on simple rules
are quite successful, reducing at the same time the effort re-
quired in the task. Although participants with simple rules
show more coherent preferences, they can hardly be repre-
sented by a utility function. Using classic utility models
to approximate lexicographic decision rules can give wildly
inaccurate answers, overestimating willingness to compro-
mise. For example, in the CO2 task we observed both non-
compensatory behavior in 24% of the sample. A pooled lin-
ear utility model would suggest the population is willing to
compromise to protect the environment, whilst a large seg-
ment will not be willing to make such trade-offs. Lastly, the
anomalies task provided an interesting testbed of the limits
of our method. Although we could not replicate the expected
anomalous behavior, it shows the common failure of partition
algorithms splitting the sample when there is only one cluster.

Our model synthesizes choice models into a general frame-
work for analyzing and discovering preference structures.
The approach has the potential to transform current knowl-
edge and approaches to understand preferences, which cur-
rently focus on specific structures, and lack a unifying frame-
work for both theoretical and empirical analysis of the pref-
erences of many decision-makers. The results can impact re-
search in the decision-sciences, with applications to health,
environmental decision-making, and fundamental studies of
human cognition. Practitioners will be able to use this ap-
proach to classify decision-makers according to their prefer-
ence structure, answering first if they know what they want
and henceforth what they want or the content of those prefer-
ences. This can inform decision-makers themselves through
decision analysis, as well as policy-makers, to help them bet-
ter understand the welfare impacts of new policies.

Finally, we highlight some limitations of our method.
Clustering always has some arbitrariness. For example, the
number of dimensions to embed the dissimilarity matrices
in a lower dimensional space is defined using the elbow
method. Determining the number of dimensions in the op-



timization process can offer a potential improvement (Côté &
Larochelle, 2016). Future applications should also developed
better ways of determining the number of clusters and herein
merging similar clusters. New methods that marry k-means
and hierarchical clustering algorithms provide an interesting
direction to automate the merging stage (Peterson, Ghosh, &
Maitra, 2018). The experimental design also provides some
challenges. The number of pairwise comparisons required to
complete a tournament grows exponentially with the number
of alternatives, increasing the risk of observing mental fatigue
through the experiment. A new experimental paradigm needs
to be develop in order determine apriori the minimal number
of questions required to recover preference structure informa-
tion and henceforth lower the cognitive burden from human
participants. Although our method is valid for any type of
pairwise comparison, empirical tests should be extended to
other experimental domains.
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