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Abstract

The standard model of cosmology ΛCDM predicts that dark matter (DM) density
profile should diverge as r−1 at the center of dwarf galaxies (cusp), while the
observations tend to suggest a flatter profile (core). The discrepancy is known
as the core-cusp problem, and it remains one of the unresolved controversy in
small-scale cosmology. Bayesian inferences can be used to distinguish these two
cases based on observed data. However, traditional methods like MCMC that
relies on likelihood calculations is intractable because of the integration needed
to marginalize the the unobserved phase space coordinates of stars. In this study
we use conditional Variational Autoencoder (cVAE) and Mixture Density Network
(MDN) to make likelihood-free estimation of the model parameter posteriors for
Fornax dwarf Spheroidal (dSph) galaxy. Synthetic training sets are generated from
a very flexible Strigari-Frenk-White (SFW) spheroidal galaxy model to train the
deep networks. Our study shows that because of the need of cVAE to tune the
relative importance of latent and reconstruction losses, and possible introduction
of bias, we found MDN to be a more suitable method for this problem. Although
most of the parameters are unconstrained, we show that the MDN has sensitivity to
distinguish between core and cusp profile, and the result can be further improved
with larger training set.

1 Background

The standard model of cosmology is known as ΛCDM. The model is successful in predicting the
observable universe at the large scale, such as the temperature anisotropies of the cosmic microwave
background radiation and the power spectrum of the large scale distribution of galaxies. However,
at the sub-galaxy level, some controversies remain. One of which is the core-cusp problem. A
particular robust prediction of the standard theory is that, in the absence of baryonic effects and
external influences, a dwarf galaxy’s dark matter (DM) density distribution should follow the NFW
profile [1], where the central profile diverges as r−1 (cusp). However, the observation of dwarf
satellite galaxies around the Milky Way suggests a less dense and flatter central density profile (core)
(e.g. [2]). The problem is particularly interesting because not only will it refine our cosmological
model, it can also help to constrain plausible DM candidates (e.g. [3, 4]) and assist in our search for
these elusive particles.

Our galaxy Milky Way is surrounded by many satellite dwarf galaxies, we have discovered dozens
of them so far. These galaxies are the focal point of the controversy because their mass composed
almost entirely of DM. Further more, their small mass and lack of star formation activities remove
the possibilities that the central density profile could be disturbed by the baryronic effects. Dwarf
spheroidal (dSph) galaxies, named because of their apparent spherical shape, in particularly, also ex-



hibit little external influence from Milky Way. These conditions make dSph galaxies ideal candidates
in shedding light on this issue, and Fornax dSph is one such galaxy.

A direct way of inferring the central density profile from a dwarf galaxy is by fitting a stellar
dynamical model to a large sample of stars observed in the galaxy. However, because of the distance
we can only observe the line-of-sight (los) velocities and angular positions of the stars in a dwarf
galaxy. The traditional methods based on Jean’s analysis produce ambiguous results due to parameter
degeneracy [5]. With high quality data accumulating over recent years, challenges remain at finding
the best ways to make inferences from such data. Ideally, we would calculate the likelihood directly
to compare different models, but this is computationally intractable for complicated stellar models
due to limited observations. In this project we propose to use recent development in deep learning to
make likelihood-free inference from the data of Fornax dSph galaxy.

2 Related Work

It’s a rather common situation that a complicated model can be simulated forward but has intractable
likelihood. However, in Bayesian inference likelihood is needed to estimate the model posterior. One
method developed to address this problem is Approximate Bayesian Computation (ABC) [6, 7]. ABC
and its variants[8] bypasses the likelihood evaluation by simulating artificial data from the model
under certain model parameters, which is compared with the real data. The set of parameters that’s
within ε-distance away from the observation is kept to estimate the posterior. The ABC methods are
implemented (e.g. [9, 10, 11]) and are used widely in cosmology (e.g. [12, 13, 14, 15]). However,
there are generally two challenges involved in applying this method. One is to devise an effective
distance measurement or summary statistics to compare the generated-data with the observed data,
such that the distance is sensitive to the parameters of interest and is efficient to compute. Another
problem is determination of appropriate size of ε, which could critically slow down the algorithm if
too small, or the estimated posterior becomes too broad if it’s too large. Our methods using neural
networks don’t have the second problem, while the first problem is greatly alleviated because the
actual features from data can be extracted directly from the user input, although the specific form of
the user input also needs to be chosen with care.

As the amount of observation data increases exponential in recent years, application of deep learning
methods are rapidly expanding in cosmology. For example, convolution neural network is used to
classify gravitational lensing images [16] and estimate cosmological parameters [17]. Autoencoder is
applied to extract features from large multi-weavelength galaxy surveys [18]. Generative models,
such as variational auto encoder (VAE) and generative adversarial network (GAN), are used to
emulated computationally intensive cosmological simulations[19] and to generate realistic galaxy
and astronomical images[20, 21]. Here we use deep learning methods to make inference of model
parameters and their uncertainties.

3 Deep Learning Methods

We use two approaches in deep learning to make likelihood-free inferences. One is based on
Variational Bayesian method [22, 23], specifically we use the conditional Variational Autoencoder
(cVAE). The second approach is to estimate the the posterior directly with mixtures of Gaussians, or
the Mixture Density Network (MDN).

3.1 Conditional Variational Autoencoder

Variational autoencoder (VAE) is traditionally used to learn a low dimensional representation, latent
variables z, of high dimensional data x, such as images or audios. It is a generative model, therefore
it is possible to sample x thought z from the learned distribution p(x|z). The mathematics behind the
technique is Variational Inference (VI), where the posterior is approximated from the result of the
optimization.
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Figure 1: On the left is the conditional Variational Autoencoder network. For a given model parameter
Y and the corresponding galaxy X, Q encodes the input into the latent space Z. The decoder network
decodes Z, condition on the same X, to predict the model parameter Ŷ . We assume a N(0, 1) prior
for Z, and square error reconstruction loss. One the right, to sample possible values of Y for a given
galaxy X , we draw z ∼ N(0, 1) to decode the possible Ŷ .

In VI, posterior distribution over latent variables p(z|x) is approximated by q(z|x). Assume that we
want to compute the log-probability of observations x, which is govern by latent variables z:

log(p(x)) =
∑
z

q(z|x)log(p(x))

=
∑
z

q(z|x)log
(
p(z, x)

q(z|x)

)
+
∑
z

q(z|x)log
(
q(z|x)

p(z|x)

)
= L̂+DKL(q(z|x)||p(z|x)) ≥ L̂

(1)

where L̂ is the variational lower bound, and DKL(q(z|x)||p(z|x)) ≥ 0 is the Kullback–Leibler (KL)
divergence. Since p(x) doesn’t depend on the choice of q(z|x), one can optimize L̂, and in the
process the DKL term will approach 0 (i.e. q(z|x) approaches p(z|x)). Using p(z, x) = p(x|z)p(z),
we can further rewrite the variational lower bound to arrive at the objective function of the VAE:

L̂ =
∑
z

q(z|x)log
(
p(z)

q(z|x)

)
+
∑
z

q(z|x)log (p(x|z))

= −DKL(q(z|x)||p(z)) + Eq(z|x)log (p(x|z))
(2)

The first is the regularization term, where p(z) could be a simple uniform or Gaussian prior. The
second term is the reconstruction quality (i.e. if a z can perfectly reproduce a x, the quality would be
high).

The cVAE is a straightforward extension of VAE, where the probability distributions in Eq. 1 and
Eq. 2 are conditioned on an input. In this study we seek to infer the probability distribution of the
model parameters given an input galaxy. Specifically for a galaxy X and parameter Y , we want
to approximate the distribution P (Y |X). Rewrite the expressions in Eq. 1 and 2, condition on the
galaxy X , we arrive at the objective:

logP (Y |X)−DKL[Q(z|Y,X)||P (z|Y,X)] = Ez∼Q(·|Y,X)[logP (Y |z,X)]

−DKL[Q(z|Y,X)||P (z|X)]
(3)

Figure 1 illustrate our cVAE network. The encoder net Q(z|Y,X) assumes a Gaussian distribution. It
encodes the input into a multi-dimensional mean and variance of the Gaussian distribution. The latent
variable Z is sampled from the Q, and is subsequently decoded condition on the same input galaxy
X by the decoder network P (Y |z,X). The regularization loss DKL(Q(Z|Y,X)|P (Z)) enforces
the Q to be a standard normal distribution. During the testing time, latent z can be randomly drawn
from a standard normal distribution to sample the possible parameters Ŷ for a given galaxy X . Note
that because of the random sampling of Z in the network, the optimization of the network is done
with backpropagation using the “reparametrization trick” proposed by Kingma and Welling [22].
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3.2 Mixture Density Network

The second approach is the MDN first proposed by Bishop [24]. The true posterior density P (Y |X)
is approximated by neural network representing a mixture of m Gaussian densities, Q(Y |X) =∑m
i=0 wi(X)N(Y |µi(X),Σi(X)), as show in Figure 2. It is a simple feedforward neural network

where the outputs are the means, covariance matrices, and weights of the the mixture models. The
objective is to maximize the log-probability log[Q(Y |X)]. During the test time, the parameters Ŷ
of a galaxy X can be drawn from the mixture of Gaussian Q(Y |X) = Q(Y |W (X), µ(X),Σ(X))
directly.

Figure 2: Mixture Density Network. Given a galaxy X , a feedforward neural network estimate
directly the means µ, covariance matrices Σ, and weights W of Gaussian components that are used
to approximate the truth posterior P (Y |X).

In theory, MDN is capable of representing any conditional distribution arbitrarily accurately, provided
that the number of mixture components m and the size of the neural network is sufficiently large, in
addition to a sufficiently large training set to fit the network parameters.

4 Fornax Data

The dataset that we analyze for this project comes from the Magellan (or MMFS) survey [25], which
includes an observation of 2483 individual stars in the Fornax dwarf spheroidal galaxy. For each
star the projected x, y positions on the sky, and the line-of-sight (los) velocities vz were measured.
The los velocity measurements rely on the Doppler shift of light: if a star is moving toward (away)
from the observer, the star’s light spectrum would be red-shifted (blue-shifted). The measurement
requires observation of light spectra of individual stars, therefore not all of the stars’ los velocities are
observed. In addition, stars are observed non-uniformly across the galaxy.

Figure 3: Left panel shows the scatter plot of the positions of the Fornax stars, the photometric dataset
is in red, and the spectroscopic dataset is in blue. The right panel shows the density of projected
radius R for these two dataset.

The left panel of Figure 3 shows all the observed stars in Fornax. The red dots (a total of 14068
stars) has only the photometric measurement (i.e. only the x, y position of these stars are known)[26].
The stars in blue is our dataset that include the spectroscopic los velocity measurements. Since the
galaxy is spheroidal, the position can be represented by projected radius R =

√
x2 + y2. The right
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panel shows the distribution of the projected radius of both photometric Dphoto(R) and spectroscopic
datasets Dspect(R). The relative density of stars at each R is important because it represent the
sampling bias of our data. When generating the synthetic dataset for training, we also need to apply
the same bias/mask to make a correct inference. Specifically, once a synthetic galaxy is generated,
based on the position R of each star, the star only has a probability of Dspect(R)/Dphoto(R) to be kept
in the galaxy. The synthetic stars beyond the maximum range of Fornax photometric data is rejected
directly.

5 Galaxy Model and Data Simulation

The neural network models introduced in section 3 are trained with synthetic data generated from a
spheroidal galaxy model introduced by Strigari, Frenk, and White [27]. Since these models typically
only accept a fixed array of values in a fixed ordering as inputs, we experiment with different input
methods to find an optimal approach.

5.1 Strigari-Frenk-White (SFW) model

Strigari, Frenk, and White introduce a flexible density function, SFW model [27], of distribution of
stars in an equilibrium spheroidal galaxy. It is a separate function of specific energy E and specific
angular momentum J : f(E, J) = g(J)h(E).

The distribution of angular momentum is defined as,

g(J) =

{
[1 + (J/Jβ)−b]−1 for b ≤ 0

1 + (J/Jβ)b for b > 0
. (4)

It describes a transition, at scale angular momentum Jβ , from a flat angular momentum core to a
power law with index b. The energy distribution function is,

h(E) =

{
NEa(Eq + Eqc )d/q(Φlim − E)e for E < Φlim
0 for E ≥ Φlim

. (5)

Where N is the normalization constant. The function also follows a power law, with different slopes
at different energy level, set by characteristic energy scale Ec. The distribution is truncated at the
point where the star has enough energy to escape the galaxy, set by the potential at the limiting radius
Φ(rlim) = Φlim.

The energy of a star can be written as E = v2/2 + Φ(r) = (v2r + v2t )/2 + Φ(r) and the angular
momentum is J = rvt. The radius r is the distance of the star from the center of the galaxy, vr and
vt are the radial and the tangential velocities of the star with respect to the galaxy center. Φ(r) is
the potential energy which can be calculated directly from the mass density of the galaxy, which is
approximately the DM density ρDM (r) because the system we are interested in is DM dominated,

Φ(r) = 4πG

[∫ r

0

r′2ρDM (r′)dr′ +

∫ ∞
r

r′ρDM (r′)dr′
]

+ Φ0

Where G is the gravitational constant and Φ0 is a constant offset that makes Φ(0) = 0. We consider
a DM distribution described by a generalized Hernquist profile [28, 29],

ρDM (r) = ρs

(
r

rs

)−γ [
1 +

(
r

rs

)α](γ−β)/α
(6)

To simply the model we set α = 1 and β = 3, which makes it a generalized NFW[1] profile with a
flexible central slope γ. With γ = 0 being a core model and γ = 1 being a cusp model. Therefore we
have a total of 11 free parameters that we need to infer from this SFW model: Y = [a, d, e, Ec, rlim,
b, q, Jβ , ρs, rs, γ]. Note that ρs has units M�/kpc3, rlim and rs have unit of kpc, Jβ is in units of
rs
√

Φs, and Ec has a unit of Φs, where Φs = 4πGρsr
2
s .

Here we also reparametrize ρs as mass enclosed within the half-light radius Rh, Menc. Given the half
light radius of the Fornax data (Rh = .72kpc, the median value in the photometric dataset), one can
reformulate the ρs as Menc, using Menc = M(Rh) = 4π

∫ Rh

0
r2ρDM (r)dr.
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a d e Ec log(rlim) b q Jb log(Menc) rs γ

[0, .71] [−10, 1] [0, 5] [.05, .51] [−.5, 1.5] [−5, 5] [.5, 10.5] [.01, .5] [6, 9] [−1, 0.5] [0, 1.5]

Table 1: Prior range of model parameters. Parameters are drawn randomly within the ranges to
generate galaxies for training.

5.2 Training Data Generation and Transformation

5.2.1 Synthetic data generation

We use the rejection sampling method to draw training samples. Assume that we want to sample
from a density p(x), let q(x) be a simple proposal distribution (e.g., a uniform or normal distribution),
and given that there is a constant C: 1 ≤ C <∞, such that p(x) ≤ Cq(x) for all x. The rejection
sampling steps are:

1. Draw sample xi ∼ q(x)

2. Draw ui ∼ Uniform(0,1)

3. If ui < p(xi)
Cq(xi) , accept xi; otherwise, reject.

For this model we have xi = (ri, vir, v
i
t), and we set q(x) = max(f(r, vr, vt|Y )), the maximum of

the density function, and we let C = 1. Typically a galaxy of 10,000 stars can be drawn in a few
seconds. The sampling efficiency or speed varies depends on the model parameter Y .

Based on the spherical symmetry, the set of {r, vr, vt} is transformed into Cartesian coordinates
{x, y, z, vx, vy, vz}. And because in practice we only observe x, y, and los velocity vz , we only keep
{R, vz} of each galaxy for the training, where R =

√
x2 + y2 is the projected radii of the stars.

The prior range of each parameter is listed in Table 1. Each training sample is generated from the
parameters that are drawn randomly from these priors. Note that during training, each parameter in
the “label” Y is rescaled to have a range between [0, 1] so that each parameter is treated equally by
the neural network.

5.2.2 Data input methods

Since {R, vz} is a set of continuous random points without specific ordering, it can’t be directly feed
into an neural network. Here we try a few different methods. First is try to bin the data into 2-D
histogram. An alternative approach is to use Gaussian kernel density estimate to obtain a 2D density
estimate of the data, then calculate the density across a 2D mesh-grid of (R, vz) coordinates. The
third method we try is DeepSets [30]. The technique allows an input of a set of data (like ours) to the
neural network, and the objective function is invariant with respect to the permutation of elements in
the set. Here we apply a version of DeepSets, where each stars in the galaxy (Ri, viz) is transformed
to a higher dimension representation by a neural network, and subsequently an average pooling is
applied to this set of representations, thus achieves permutation invariance.

The performance of each representation of galaxy is evaluated by running each input through a
feedforward neural network to make regression of the galaxy parameters with L2 loss. In this
experiment, we use 100,000 galaxies as the training set and 20,000 galaxies as the validation set.
Each galaxy has 2500 stars. Only four parameters are varying for this test: Y = [Menc, a, rlim, γ],
and other parameters are held fixed. The loss on the validation dataset result is show in Figure 4. The
red curve shows the validation loss if the input is a binned 2D histogram. Specifically each galaxy is
binned into 128x128 bins, again in 64x64 bins, 32x32 bins, ..., and so on until 2x2bins, then they
are normalized by total number of stars and number of bins, and the results are combined to form a
single input. The combination is to account for the fact that we aren’t sure what’s the optimal choice
of the bin number. Here we see that this approach has the worst performance.

Green and blue curves on Figure 4 are the results by using Gaussian kernel density to first estimate
the 2D density of (R, vz), and 30x30 (blue) and 100x100 (green) mesh-grid values are calculated
to represent the galaxy. We see that they have the best performance, with 30 grids performs better
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Figure 4: The plot shows the validation loss of different methods of feeding galaxy data {R, vz}
into the neural network. In red, stars are progressively binned (128x128+64x64+32x32+....+2x2)
using 2D histogram and combined as a single input. In blue and green, joint density of (R, vz) is
obtained by Gaussian kernel density estimate, and density at 30x30 and 100x100 mesh-grid points
are evaluated as representation of the galaxy. Teal and purple runs are the results using DeepSets,
with purple curve uses 4 times as much (10,000) stars as input.

than 100 grids. The reason could be that since most of these 100x100=10,000 values are zero, adding
more zeros makes each galaxy less distinguishable from each other. The purple and teal curves shows
the results of DeepSets, where {R, vz} are put directly into the network. The result in teal has an
input of 2500 stars, while the purple run has 10,000 stars. It shows that with larger number of stars
the performance improves, as expected. The method is promising, especially for problems where
the input has higher dimension and kernel density estimate can’t be successfully applied. Overall
performing kernel density estimate and takes the density at a 30x30 mesh-grids is currently the best
option, and will be used for final runs. It is also faster to train because of smaller input size.

6 Results

Synthetic data are generated as described in the section 5.1, each galaxy is first generated with
14086 stars, the same number of stars as the Fornax photometric data. Each star is then rejected
with probability based on the relative density of the spectroscopic data and the photometric data,
as described in section 4. The remaining stars is kernel smoothed, and the density at the 30x30
mesh-grid point are evaluated to represent the galaxy. Note that the mesh-grid boundary is set to
encompass the whole range of possible (R, vz) in the training set. We generated two sets of training
data, the smaller one has 100,000 galaxies, and the larger set contains 1 million galaxies. Each
parameter is rescaled to be between 0 and 1 based on the prior range in Table 1.

To test the accuracy of our estimations we infer the parameters of two specific mock galaxies. One
galaxy has a central cusp profile and the other one has a central core, and they both have similar mass
enclosed within half-light radius. The inferred parameters for the mock core and cusp datasets are
shown in Figure 5 and 6, respectively.

The blue histograms are the sampled posteriors from the trained cVAE, while the red distributions are
the results from MDN. Solid and dash lines are trained on large and small training sets, respectively.
On results of cVAE, we see that there is no constrain on most of the parameters, except rlim and Menc.
The model makes a good prediction on these two parameters particularly on the cusp galaxy in Figure
6. The method makes virtually the same estimation of γ posterior for both core and cusp galaxies.
The increase in the training set size doesn’t seem to improve the cVAE inference significantly. Only
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Figure 5: Inference on a central core mock galaxy. Blue distributions are the posteriors learned
from cVAE using 105 (dash) and 106 galaxies training datasets, respectively. Similar, red dash and
read solid histograms are the results from MDN model with 1x105 and 1x106 galaxies training sets,
respectively. The truths are the vertical lines in black.

for parameters rlim and b does the larger training set seem to nudge the distributions toward the truths.
We will discuss the difficulties in training the cVAE model in section 7.

On the other hand, the posteriors based on MDN looks much more encouraging. Unlike cVAE,
we see that in red curves there is significant improvement when the training set size is increased.
Specifically for core model in Figure 5, we see the distribution of parameters a, Menc, e, and γ
shift toward truth with larger training set. Even the MDN trained on smaller training set seems to
outperforms the cVAE. Note that in some cases we see multi-modality in MDN inference, as shown
in parameter rs and possibly in parameter Menc. This is most likely due to not having enough number
of mixture components. Increase the number of mixture densities will likely removes the bi-modality.
Although MDN doesn’t strictly constrain the central density slope, the posterior for γ does show that
the network is sensitive to the truth. For the core galaxy, the peak shifts toward γ = 0, while for the
cusp model the peak of the distribution is toward 0.6 (which means γ = 0.9 without scaling by the
prior), corresponds to a cusp central profile. The result strongly suggest that a even larger net and
training dataset can improve the constrain on γ parameter.

To further check the accuracy of MDN train on the large training set, we estimate the posterior of
300 randomly generated galaxies. The results on γ, rlim, and Menc are plotted in Figure 7. On each
panel the blue scatter points are the means of the predicted posteriors, the corresponding standard
deviations are plotted as the error bars. The green line is the linear fit of the means, and the red line
indicates the truth. The middle and the right panels shows that the MDN can make a very accurate
prediction of rlim and Menc, but the predictions of γ parameter have large error bars.

Finally we make inference on the Fornax data set using the same cVAE and MDN models. Figure 8
shows the estimated posterior with same color and line schemes as in Figures 5 and 6. As discussed
earlier, the result from cVAE is mostly uninformative, except for rlim and Menc. The posterior that we
can trust the most is the solid red curves, corresponds to MDN trained on large dataset. The scaled γ

8



Figure 6: Same as Figure 5, except that the inference is done on a cuspy mock galaxy.

Figure 7: Means and variances of predicted γ, rlim, and Menc for 300 randomly generated mock
galaxies using MDN with large training set. Red line is the truth and the green line is the linear fit of
the mean points. MDN shows sensitivity on γ as the shown by the positive correlation (r=0.50), but
the scatter is too large to be conclusive.
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Figure 8: Inference of Fornax data, using the same learned cVAE and MDN models as in Figure 5
and 6.

parameter is peaked at around 0.6, which mean γ = 0.6× 1.5 = 0.9, corresponds to a cusp central
density profile. However, the result is inconclusive as we see in Figure 7, the error bar is still too
large.

7 Discussion and Future Work

The performance of cVAE doesn’t improve as much with the size of the training set. I think it’s
because of the fundamental limitation of the network architecture as shown in Figure 1. During the
training time, regularization loss falls first and quickly compared to the reconstruction loss, as a result
decoder relies only on input X to learn Ŷ . Since Z becomes essentially a pure noise, and decoder
tries to ignores its input. As a result, the sampled Ŷ has very little variance (Z plays little roles in
predicting Ŷ ). Since the reconstruction loss is also high, often time the network will learn a posterior
P (Y |X) that rejects the truth. Alternatively one can put extra weight on the reconstruction loss, so
the network will first try to lower the reconstruction loss, however having a large weight makes the
network ignore the regularization term, therefore Y is directly pass through the network and is used
to predict Ŷ itself. The result is that decoder couldn’t learn to predict Ŷ from X and Z alone. During
the sampling time and without Y in the network, sampled posterior could be biased and/or has large
variance (i.e. no constrain on the parameters). The cVAE results show in the previous figures are first
trained on the cVAE network without extra weight on the reconstruction loss. This allows decoder
to have chance to learn to predict Y, after a certain epoch extra weight to the reconstruction loss is
introduced which increases the variance in the posterior. However this strategy certainly doesn’t
solve the fundamental problem of this architecture for our application, and the larger training set
doesn’t help much to improve the outcome either.

The result from last section shows that with larger training data the performance of MDN can be
improved. It also shows that the network is sensitive to the central density profile, or the γ parameter.
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The next step is to further increase the size of the training set, and if the trend continues, we might be
able to robustly constrain the γ parameter of the Fornax dSph galaxy.
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