
Simulation Study of Conditional Independence Test

Using GAM Method

Chu, Tianjiao

December 13, 2000

1 Introduction

Causal information, or even partial causal information, can help decision making. For example, the knowledge

that lung cancer and smoking are positively correlated does not tell us what we should do to prevent lung

cancer. However, if we know that smoking is a cause of lung cancer, we know that we can prevent lung

cancer by the control of smoking.

Traditionally, causal information is derived from controlled experiments. However, in many cases, con-

trolled experiments are too expensive, or practically infeasible, or ethically improper. Nevertheless, in these

cases, observational data are often available. Works by Pearl, Spirtes, Glymour, Scheines, and other peo-

ple,1 has shown that we could gain some insight of the causal relations among random variables with the

knowledge of conditional independence relations among these variables.

In this paper, I will report a simulation study of extracting conditional independence information from

observational data using a regression method, the generalized additive model (GAM). I will �rst brie
y a

current approach to the inference of causal relations based on conditional independence information, as well

as the current method of testing conditional independence relation. Then I will discuss the GAM approach

to the conditional independence test for continuous data. I will report the process the generating simulation

data, and the conditional independence test result of applying the GAM method to these data. I will also

consider how well as the how well these tests could be used to infer causal information. I will also give an

analysis of the performance of the GAM method. Finally, I will discuss possible future work.

1Pearl (1988), Spirtes et al (2000).
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2 Causal Graph and Conditional Independence Test

2.1 Causal Graph

A directed graph is de�ned as a set of vertices and a set of directed edges connecting pairs of vertices. If

we require that these edges cannot form any directed cycle, i.e., we cannot start from a vertex X , follow

the direction of the edges, and end at X , then the graph is called a directed acyclic graph (DAG). DAGs

provide an intuitive representation of causal relations among a set of random variables: Each vertex in the

graph represents a random variable, and a variable X is a direct cause of a variable Y if and only if there is

a direct edge from X to Y in the graph.

We will further impose the following two assumption to a directed acyclic graph:2

Markov Condition: If the causal relations among a set of random variables for a population can be

represented by a graph G, then a variable X is independent of a set of variables Y conditional on another

set of variables Z, provided that, in the corresponding graph G, the vertices representing variables in Y are

neither parents, nor descendents of the vertex representing X in G, and the vertices representing variables

in Z are the set of all the parents of the vertex representing X in G.

Faithfulness Condition: If we observe that, in a population, a random variable X is independent

of a random variable Y given a set of random variables Z, this conditional independence relation follows

from the corresponding causal graph G by the Markov Condition. For example, if X and Y are conditional

independent given some other set of variables, the vertices representing X and Y respectively in G cannot

be connected by an edge.

These two conditions establish a close relation between causation and conditional independence. Based

on this relation, we can infer causal information from knowledge about conditional independence. The SGS

algorithm, for example, can output the set of all of the possible causal graphs that are compatible with the

conditional independence relations observed in a population, provided that there is no unobserved variable

that is the parent of any two observed variables in the population.

Further studies have been focused on causal inference with the presence of unobserved variables that are

parents of pairs of observed variables. Algorithms, such as FCI, have been developed to infer common causal

patterns from populations sharing same set of conditional independence relations among observed variables.

Moreover, causal inference from the population where variables may be causes of each other have also been

studied.3

2Spirtes et al (2000).
3Richardson (1996).
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2.2 Current Tests for Conditional Independence

If we take a look at the kind of data where people try to draw causal information by the method mentioned

above, we will �nd that these data are either discrete (or have been discretized before use), or assumed to

be linear in terms of the functional relation between a child and its parents. This is not surprising, because

basically the available methods of conditional independence test can only be applied to either discrete data,

or data where the variables are linearly connected.4

2.2.1 Conditional Independence Test for Discrete Data

Conditional independence test for a set of discrete random variables has been well studied.5 Consider three

discrete random variables: V = fX;Y; Zg, suppose X has m levels, Y n levels, and Z p levels. To test the

null hypothesis that X??Y jZ, we can use the following statistic:

Q =

mX
i=1

nX
j=1

pX
k=1

�
NXi;Yj ;Zk

� N̂Xi;Yj ;Zk

�2
N̂Xi;Yj;Zk

(1)

where NXi;Yj ;Zk
is the number of observations with X = Xi, Y = Yj , Z = Zk; NXi;Zk

the number of

observations with X = Xi and Z = Zk; NYj ;Zk
the number of observations with Y = Yj and Z = Zk,

NZk
the number of observations with Z = Zk, and N̂Xi;Yj;Zk

=
NXi;Zk

NYj ;Zk

NZk

. For large samples, Q has

approximately a �2 distribution with degrees of freedom: (m� 1)(n� 1)p.

If we are not satis�ed with the �2 approximation for small sample sizes, we can apply Monte Carlo

method to simulate the distribution of the statistic Q under the null hypothesis.

2.2.2 Conditional Independence Test for Linear Model

For linear models with a normal distribution, a function of the sample partial correlation could be used

as a statistic for conditional independence test. 6For random variables X , Y , and Z, the sample partial

correlation of X and Y , with Z held constant, is:

rxy:z =
rxy � rxzryzp
1� r2xz

q
1� r2yz

(2)

where rxy, rxz, and ryz are sample correlations for X and Y , X and Z, and Y and Z respectively. Under

the null hypothesis, i.e., the partial correlation �xy:z = 0, the follow statistic has a t distribution with n� 3

degrees of freedom:

t =
rxy:z

p
n� 3q

1� r2xy:z

(3)

4Loglinear Case
5Chapter 4, Conover (1980).
6x3.4, Jobson (1991).

3



where n is sample size.

Alternatively, we could use Fisher's z statistic:

z(�xy:z; n) =
1

2

p
n� 4 log

1 + �xy:z
1� �xy:z

(4)

where �xy:z is the population partial correlation. The distribution of z(�xy:z; n)�z(rxy:z; n) has a standard
normal distribution.

2.3 Nonparametric Conditional Independence Test

However, we often need to know the conditional independence relations among a set of continuous variables,

or a mixture of continuous and discrete variables, where we do not know very much about the functional

relations among the variables, nor do we know much about the distribution of each error term. In this case,

non-parametric conditional independence tests would be applied.

2.3.1 Nonparametric Independence Test

The nonparametric Independence test is a special case of nonparametric conditional independence test,

where the set of variables to be conditioned on is empty. The fact that we only need to consider two random

variables makes the test much simpler than the conditional independence test in general.

When X and Y are both continuous, we can use either Spearman's � test or Kendall's � test to �nd

whether X is independent of Y .

Here we use H0 to denote the hypothesis that X and Y are independent. Let n be the sample size. If

we use the � test, the Spearman's statistic is de�ned as:

� =

nX
i=1

R(Xi)R(Yi)� n

�
n+ 1

2

�2

 
nX
i=1

R(Xi)
2 � n

�
n+ 1

2

�2
! 1

2

 
nX
i=1

R(Yi)
2 � n

�
n+ 1

2

�2
! 1

2

(5)

Let Nc be the number of pairs (Xi; Yi) and (Xj ; Yj) where
Yj � Yi
Xj �Xi

> 0 plus half of the number of pairs

where Yj = Yi, and Nd the number of pairs where
Yj � Yi
Xj �Xi

< 0 plus half of the number of pairs where

Yj = Yi. The Kendall's statistic is de�ned as:

� =
Nc �Nd

Nc +Nd

(6)

A level � test will reject the null hypothesis if the value of the � or � statistic exceed their 1� �

2
quantiles

or are less than their
�

2
quantiles respectively.
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2.3.2 Extension of Current Conditional Independence Tests

One approach to non-parametric conditional independence testing is trying to extend the available non-

parametric independence test between two random variables. Unfortunately, these tests cannot be extended

to conditional independence tests, unless the conditioning variable is discrete. The reason is simple: the

fact that X and Y are independent conditional on Z = z for every z in the codomain of Z does not imply

that, for any measurable subset A of the codomain of Z, X and Y are conditionally independent given

Z 2 A.7 Therefore, we have to show that X and Y are independent conditional on every possible value of

Z. Obviously, this is impossible when Z is continuous.

Another approach is to try to extend the available conditional independence test for discrete variable

or linear model. People have routinely converted the continuous data into discrete data, and then applied

conditional independence tests for discrete data. The problem with this approach is that the conditional

independence relation among the continuous variables does not imply conditional independence among the

discretized variables.8 Conversely, conditional independence among discretized variables does not imply

conditional independence among continuous variables either.9 We could improve the approximation of the

continuous distribution by increasing the number of bins for discretization, but the conditional independence

test for discrete data is not reliable when the number of observations per cell is small.

2.3.3 Conditional Independence Test by Density Estimation

The density estimation method is conceptually straightforward. The basic idea is to estimate marginal

distributions and joint distribution, and see how close a certain function of the marginal distributions is to

the joint distribution.

The discretization method discussed above is also a kind of density estimation. However, in this section,

we are concerned with continuous density estimation.

Suppose we want to test whether X is independent of Y given Z, we estimate the pdf f̂x;z(x; z) of X;Z,

the pdf f̂y;z(y; z) of Y; Z, the pdf fz(z) of Z, and the pdf fx;y;z(x; yjz) of X;Y; Z. Then we can test the null

hypothesis that X is independent of Y given Z using a distance between fx;y;z(x; y; z) and
fx;z(x; z)fy;z(y; z)

fz(z)

as the test statistic.

7For example, suppose Z � U(0; 100), X � U(Z � 1; Z + 1), Y � U(Z � 1; Z + 1), and X??Y jZ = z. It is easy to see,
however, that X 6??Y jZ 2 (0; 50). Without knowledge of Y , we only know that X lies in the interval (�1; 51), an interval of
length 52. With the knowledge of Y , we know that X lies in (max[Y � 2;�1];min[51; Y + 2]), an interval of length at most 4.

8Use the example in the previous footnote, it is easy to see that:
Pr(X 2 (0; 1); Y 2 (10; 11)jZ 2 (0; 50)) = 0 < Pr(X 2 (0; 1)jZ 2 (0; 50))Pr(Y 2 (10; 11)jZ 2 (0; 50)
9Suppose X � U(�1; 1), Y � U(�1; 1), and X??Y . Suppose Z = X + Y � 20 if X < 0; Y < 0; Z = X + Y � 10 if X < 0,

Y � 0; Z = X + Y if X � 0, Y < 0; and Z = X + Y + 10 if X � 0, Y � 0. It is easy to see that X 6??Y jZ = z. For
example, given Z = 0, we know that X 2 [0; 1); but given Z = 0 and Y = �0:5, we know that X = 0:5. However, conditional
on Z 2 (k � 2; k + 2), where k = �20;�10; 0; 10, X and Y are independent. Hence Pr(X 2 A;Y 2 BjZ 2 (k � 2; k + 2)) =
Pr(X 2 AjZ 2 (�2; 2))Pr(Y 2 BjZ 2 (�2; 2)), where A;B are measurable subsets of the real line.
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The distance D between two densities fx;y;z(x; y; z) and
fx;y(x; y)fy;z(y; z)

fz(z)
can be any distance measure.

Let D =

Z
Æ(x; y; z) dx dy dz, then one choice of Æ is:

Æ(x; y; z) =

 q
f̂x;y;z(x; y; z)�

s
f̂x;y(x; y)f̂y;z(y; z)

f̂z(z)

!2

(7)

which is the kernel of Hellinger distance.

We may also want to use

Æ(x; y; z) =

�����f̂x;y;z(x; y; z)� f̂x;y(x; y)f̂y;z(y; z)

f̂z(z)

����� (8)

which is the kernel of L1 distance, or

Æ(x; y; z) =

 
f̂x;y;z(x; y; z)� f̂x;y(x; y)f̂y;z(y; z)

f̂z(z)

!2

(9)

which is the kernel of L2 distance.

The algorithm will be:

1 Estimate fx;y;z(x; y; z), fx;y(x; y), fy;z(y; z), and fz(z),and compute D.

2 Generate N set of data S1; � � � ; SN from the distribution
f̂x;y(x; y)f̂y;z(y; z)

f̂z(z)
. Compute Di for each set

of data Si, and approximate the CDF Fd of Di.

3 Compute Fd(D), and accept the null hypothesis at a signi�cant level � if Fd(D) � �.

Despite its conceptual appeal, the density estimation method is subject to the curse of dimensionality.

If the number of variables is n, we need to estimating a joint distribution in an n-space by estimate locally

weighted empirical distributions of the sample points within a neighborhood, say with radius r. For the esti-

mation to be reliable, there must be suÆcient sample points in this neighborhood. However, as the dimension

n increases, the sample size must also increase exponentially with n to maker sure that a neighborhood of

the same radius r contains enough sample points. In other words, to estimate density for high dimensional

data, the sample size must be very large.

6



3 Conditional Independence Test with GAM

In this paper, we will use the method of Generalized Additive Model (GAM), which belongs to the family

of regression methods, to test conditional independence. As we are going to see, this method provides an

approach that has much weaker assumptions than the linear normal model, and is not subject to the curse

of dimensionality as with the density estimation method.

3.1 Regression Approach to Conditional Independence Testing

The basic idea of the regression approach to conditional independence testing is that, if a variable Y is

conditionally independent of X given a set of variables Z, then the knowledge of Y does not help us predict

X if we already know Z. In practice, if we want to test whether X is independent of Y given Z, we would

assume that X is not a constant, and is a smooth function of Y and Z, plus a certain error term �. Usually,

due to the lack of information about the error term �, we further assume that � is N(0; �2), with �2 unknown.

The general algorithm of regression method is:

1 Regress X on Z and fY; Zg respectively.

2 Score the �ts of X on Z and on fY; Zg using some kind of score function.

3 X??Y jZ if and only if the �t of X on Z is better than that of X on fY; Zg.

The rationale behind the regression approach is that if two variables X and Y are independent, then we

are not going to predict X better even if we know Y . That is, the variance of X is the same as the expected

value of the variance of X given Y , if X and Y are independent.

In general the variance of X is greater than or equal to the expected variance of X given Y , that is:

E[Var(X jY )] � Var[X ] (10)

To show this, we notice that:

E[Var(X jY )] = E[E[X2jY ]� (E[X jY ])2] = E[E[X2jY ]]� E[(E[X jY ])2] = E[X2]� E[(E[X jY ])2]

� E[X2]� (E[E[X jY ]])2 = E[X2]� (E[X ])2 = Var[X ]

for E[(E[X jY ])2] = Var(E[X jY ]) + (E[E[X jY ]])2 � (E[E[X jY ]])2.
Note that although independence implies that Var(X) = E[Var(X jY )], the converse does not hold.

However, it is not diÆcult to show that if the variance of X is equal to the expected variance of X given Y ,

then the expected value of X is independent of Y :

7



(E[E[X jY ]])2 = E[(E[X jY ])2] = Var(E[X jY ]) + (E[E[X jY ]])2

=) Var(E[X jY ]) = 0 =) E[X jY ] = E[E[X jY ]] = E[X ]

One example where Var(X) = E[Var(X jY )] but X and Y are dependent is the case where Y > 0 and

X � N(0; Y ). Another example is the case where X � N(0; �21), � � N(0; �22), and Y = X2 + �, for

E[X ] = E[X jY ] = 0.

In practice, we do not need to worry about these situations. Usually, we assume that random variables

are causally connected in such a way: If Y is the parent of X , then E[X jY ] = f(Y ), where f is some

arbitrary non-constant smooth function. This essentially excludes the cases similar to the �rst example. For

the cases similar to the second example, change the order of the regression, i.e., regress Y on X , will solve

the problem.

The above argument can be applied to the case of conditional independence. Let Z be a set of random

variables, E[Var(X jY;Z)] = Var(X jZ) if X??Y jZ. Again, E[Var(X jY;Z)] = Var(X jZ) does not imply

X 6??Y jZ, but does imply E[X jZ] = E[X jY;Z].

3.2 Choice of Regression Methods

1. Surface Smoother

Among the regression methods, the surface smoother method imposes the least restriction on the

relations between variables. Here we only assume that:

X = f(Y; Z) + �,

where f is an arbitrary smooth function, and � is independent of (Y; Z).

This method works for the case where we only have 2 or 3 predictors in the model. However, as the

number of predictors increases, this method is subject to the curse of dimensionality.

2. Additive Model

In an additive model, the response variable is assumed to be the sum of arbitrary univariate functions

of each predictor, plus an error term. In our 3 variable case, this means:

X = f(Y ) + g(Z) + �,

where f and g are arbitrary smooth functions, and � is independent of (Y; Z).

This method avoids the problem of dimensionality, because it regresses the response variable X on Y

and Z separately. Later we will discuss this approach with more details.
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3. Other Methods

If we want to relax the restrictions imposed by the additive model, and to some extent retain its

performance for high dimension cases, we may end up with some kind of mixture of the additive model

and surface smoother.

For example, let ~Y be a vector of predictors, the Projection Pursuit method assumes that:

X =

pX
j=1

gj(�
T
j
~Y ) + �,

where ~Y is a vector of predictors, gj 's are arbitrary smooth functions, and � is independent of (Y; Z).

The advantage of Projection Pursuit is that it is almost as general as Smoother Surface. However, it

is computationally expensive.

We may also want to use low dimension smoother surface regression in an additive model. For example,

if we have 4 variables X;Y; Z, and U , we may assume that:

X = f(Y; Z) + g(Z;U) + h(U; Y ) + �.

where f; g; h are arbitrary smooth functions, and � is independent of (Y; Z).

3.3 Generalized Additive Model Regression

The generalized Additive Model (GAM) is slightly more general than the additive model we mentioned

above. The GAM assumes that a univariate function, called the link function, of the response variable, is a

linear combination of smooth (univariate) functions of each predictor. (In fact, GAM allow function of more

than one predictor, but in this paper, we will only consider the univariate function.) In this paper, we will

suppose that the link function is the identity function, unless the response variable is nominal discrete, in

which case the link function is assumed to be the logit function, i.e., logit(x) = log

�
x

1� x

�
.

Suppose we want to regress a response variable Y on a set of predictors X1; � � � ; Xn, where Y;X1; � � � ; Xn

are all continuous, by GAM method. This means that we assume that E[Y jX] =
Pk

i=1 fi(Xi). We would

choose a smoother, such as cubic spline smoother,10 for each of the predictors Xi. This smoother is used to

estimate the smooth function fi. Presumably, we should also set a smoothing parameter for each smoother.

(The smoothing parameter will determine how to balance the bias and variance of smoothing.) Then we

begin an iterative algorithm, called back�tting, as described below:

10A cubic spline smoother will return a piecewise cubic polynomial function that is twice continuously di�erentiable. This
function is the solution to a variational problem that minimizes the sum of two terms:

S�(g) =
nX
i=1

(Yi � g(Xi))
2 + �

Z
(g00(x))2dx

where Yi and Xi are values of the ith observation of the response and predictor variables respectively, and � is smoothing
parameter. The g that minimizes S� is the result of cubic spline smoothing.
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Let f̂mi denote the estimation of fi at the m
th iteration,

� Initialize f̂0i for i = 1; � � � ; k. Let m = 1

� For j = 1; � � � ; k, smooth Y �
0
@j�1X

i=1

f̂mi (Xi) +

kX
i=j+1

f̂m�1
i (Xi)

1
A against Xj , and let the f̂mj be the

newly computed smoothing curve.

� If f̂mi = f̂m�1
i for all i, stop. Otherwise, increase m by 1.

3.4 Score Functions for GAM Model

AIC and BIC scores are two of the most popular score functions used in model selection.11 AIC score is

designed for the search of the model that minimizes prediction error, while BIC score is designed for the

search of the model with highest posterior. When used to compare alternative multiple linear regression

models, the AIC and BIC are de�ned as:

AIC = RSS + 2 df �2 (11)

BIC = RSS =�2 + log(N) df (12)

where RSS is the residual sum of square, df the degree of freedom, i.e., the number of parameters in the

regression model, N the sample size, and �2 the noise variance.

The formula for the noise variance �2 is:

�2 = RSS0 = (N � df0) (13)

where RSS0 and df0 are obtained from the most complicated model for the response variable, i.e., from

the model that includes all the random variables in the sample, except the response variable, as predictors.

In the multiple linear regression case, asymptotically, AIC will lead to the model with smallest prediction

error, and BIC will lead to the true model. By replacing the degrees of freedom with the equivalent degrees

of freedom, we can extend AIC and BIC to the non-parametric regression, which is the core of the GAM

regression. Because the equivalent degree of freedom does not re
ect the number of free parameters in

the model, the asymptotic properties of AIC and BIC are lost in the GAM regression model. For linear

smoothers, which include the spline smoother used in this study, one way to de�ne the equivalent degree of

freedom is to use the trace of the smoother matrix. (A smoother is linear if when we use it to smooth a

linear combination of two response variables Y1; Y2 against a set of predictorsX, the resulting smooth curve

11Akaike (1973), Schwartz (1978).
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is the linear combination of the two smoothing curves obtained by smooth Y1 and Y2 against X separately).

The smoother matrix S for a linear smoother is an n� n matrix such that:

Ŷ = SY (14)

where Y is the response variable, Ŷ is the vector of �tted values of the response variable, and n is sample

size.

AIC and BIC scores are not the only ways to do model selection.12 Another popular choice is the �2

test. The basic idea of the �2 test is that, assuming a certain set of regularity conditions being satis�ed, the

deviance between two nested alternative models has asymptotically �2 distribution with degrees of freedom

equal to the di�erence of free parameters in the two models. However, we are not going to use �2 test in

this simulation study. The main reason is that, in our simulation setting, the di�erence of equivalent degrees

of freedom between two alternative models is usually �xed. Therefore, at any given level, the �2 test is

equivalent to test whether the di�erence of deviances of the two models is greater than a constant value. As

we are going to see in later sections, this is too simple to be a test of conditional independence. Another

reason why we do not use �2 test is that the distribution theory of deviance of the GAM models is not

developed.13

3.5 GAM Method for Conditional Independence Testing

Consider a DAG G with a set of vertices V . By a GAM interpretation of G, or a GAM model based on

G, is meant a set of random variables corresponding to the vertices V and a set of restrictions imposed on

these random variables: Each child variable, i.e, a variable corresponding to a child vertex in G, is equal to

a linear combination of smooth univariate functions of their parents, plus an independent error term.

When using GAM method to test conditional independence, we usually assume the sample data were

generated from a GAM model based on a certain DAG. Suppose the sample contains the following random

variables: X;Y; Z1; � � � ; Zk; U1; � � � ; Um. If we want to test whether X is independent of Y given (Z1; � � � ; Zk),
(k � 0, if k = 0, this will be a test of whether X and Y are independent), we can apply GAM regression to

the sample data according to the following two alternative regression models:

MY;Z : X = f(Y ) +
kX
i=1

gi(Zi) + � (15)

MZ : X =

kX
i=1

hi(Zi) + � (16)

12George (2000).
13p.155, Hastie et al. (1990).
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We then compute the AIC and BIC scores for the two models respectively. Let AICY;Z ; BICY;Z be the

scores for model MY;Z , and AICZ ; BICZ be the scores for model MZ . Then, if we use the AIC score, we

would claim that X and Y are independent conditional on Z if and only if AICZ � AICY;Z . Similarly, if we

use BIC score, we would claim thatX and Y are independent conditional onZ if and only if BICZ � BICY;Z .

Note that BIC and AIC criteria di�er only at how they penalize the model complexity. More precisely,

BIC penalizes the model complexity by multiplying the degrees of freedom by log(n), where as AIC multi-

plies the degrees of freedom by 2. Therefore, in case the results given by AIC and BIC scores di�er, the BIC

score always prefers the simpler regression model, and the AIC score always prefers the more complex one.

3.6 Comments on GAM Method

One big concern with GAM is the assumption that the functional relation between the response variable and

its predictors is additive may be not always reasonable. If this assumption does not hold, we will have the

following problems:

Suppose we want to test whether X??Y j (Z1; � � � ; Zk). If we choose X 6??Y j (Z1; � � � ; Zk) as the null

hypothesis, the violation of the additive assumption means that, under the null hypothesis, X is not a linear

combination of smooth functions of Y and Z1; � � � ; Zn. Therefore, the GAM test may not be reliable.

Now suppose that we let X??Y j(Z1; � � � ; Zk) be the null hypothesis. This is �ne as long as k = 1 contains

no more than one random variable. If (Z1; � � � ; Zk) is a vector of 2 or more random variables, when the

additive assumption is violated, even when the null hypothesis is true, the GAM test will not be reliable.

Unfortunately, the violation of the additive assumption is almost inevitable when we use the GAMmethod

to derive the conditional independence relations among a set of random variables from some sample data,

even if the sample data were generated from a GAM model based on a DAG, i.e., each child variable is a

linear combination of smooth univariate functions of its parents plus some independent error term.

To illustrate this point, consider the DAG G in �gure 1. Suppose X4 = f1(X1) + f2(X2) + f3(X3) + �1,

X5 = g(X4)+�2, andX1; X2; X3; �1, and �2 are independent normally distributed random variables with mean

0. If we only want to test whether X4??X1j(X2; X3), the additive assumption is not violated. However, we

also need to test whether X5??X1j(X2; X3), etc. It is easy to see that, in general, the additive assumption

does not hold for the latter test, because, in general, X5 is not equal to a linear combination of smooth

functions of X1, X2, and X3, plus some independent error term. (Consider the case where f1; f2; f3 are the

identity function, and g the square function.)

Further more, the marginalization of a GAM model in general is no longer a GAM model. That is, if we

allow the existence of latent variables, we may �nd that the set of observed variables cannot be interpreted
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as a GAM model based on some DAG. For example, consider the GAM model mentioned in the previous

paragraph. Suppose now that X4 is a latent variable, then conditional independence relations among the

4 observed variables X1; X2; X3 and X5 is encoded by the DAG G0 in �gure 2. However, it is easy to see

that, in general, no GAM interpretation of G0 has the joint distribution as the marginal distribution of

(X1; X2; X3; X5).

Despite these limitations, GAM method is still a promising approach, because, �rst, the additive as-

sumption, although not always reasonable, is much weaker than than that of the linear normal model, hence

general enough for many situations. Second, with the additive assumption, we do not need to worry about

the curse of dimensionality. Third, as we are going to see, that the violation of the GAM assumptions does

not necessarily lead to undesirable test result.

13



4 Simulation

To do the simulation study, we built a GAM data generator, and used this program to generate more than

one thousand samples based on some GAM models. We also wrote S codes for conditional independence

tests, and implemented the PC algorithm in S. We then imported the data to the S-plus program and

conducted conditional independence tests, as well as causal pattern search. Finally the results were output

and analyzed.

4.1 GAM Model Speci�cation

In this paper, by a GAM model we do not mean a regression model such as Y = f(X)+�, although the latter

can be viewed as a special kind of GAM model. A GAM model is a system that includes a set of random

variables, and the information about which of them are continuous, or discrete, and for discrete variables,

their number of levels. A GAM model also contains a set of causal relations connecting the random variables

such that a DAG representing these relations does not contain a directed cycle, as well as a set of functional

relations between each random variable X and the set of random variables in the model that are direct

causes of X . Finally, for each random variable that has no direct cause in the model, the model must specify

its distribution, and for each continuous variable that has direct causes in the model, the model must specify

the distribution of an additive error term attached to that variable.

Here we need to given a brief explanation of how each sample point of the continuous and discrete data

is generated so that the following description of the structure of GAM data generator makes sense.

� A continuous variable with no direct cause in the model is generated from a given distribution by a

random number generator. So are the additive terms to a continuous or ordinal discrete variable.

� A continuous variable with direct causes in the model is generated by computing a function of its direct

causes, and then adding an error term to the result. Note that if a direct cause is a nominal discrete

variable, its values will be converted to integers before being placed in the function.

� A discrete variable with no direct cause in the model is generated from a multinomial distribution by

a random generator.

� A discrete variable with direct causes in the model is generated is generated in the following way:

First, for each level of the variable, compute a distinct function of the direct causes of the variable.

Then the values of all the levels are converted to a multinomial probability distribution over the all the

levels. Finally, the value of this variable is generated from that distribution by a random generator.
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4.2 GAM Data Generator

An essential part of this simulation study is to build a GAM data generator. The basic requirement for a

GAM data generator is that it must be both able to generate any number of samples automatically according

to some pre-speci�ed model, and able to generate random GAM models automatically, then generate samples

from these models.

The GAM data generator contains three parts: a graph reader, a model generator, and a sample generator.

Graph Reader: The function of graph reader is to parse a �le that describes the vertices and edges of a

DAG, and create a DAG according to that �le, where a �le specifying a DAG containing lines that

specify, for each vertex in the DAG, the set of vertices, if any, that are parents of that vertex in the

DAG. Of course, it should check whether the �le is a valid description of a DAG. For example, it will

check whether there is any directed cycle implied in the description.

Model Generator: The heart of the GAM data generator is the model generator, which either generates

a GAM model based on a �le that completely speci�es that model, or generates a semi-random GAM

model based on a �le partially specifying a GAM model, or generates a random GAM model based on

a �le specifying a DAG.

To specify a GAMmodel completely, besides specifying the DAG, we need also the following information

for each variable in the model:

� We need to specify the type of variable, which could be continuous or discrete.

� If a variable is discrete, we need to specify the number of levels. The lower bound is 2, and the

upper bound is 12.

� If a variable has no direct cause in the model, we need to specify the distribution of the variable.

If the variable is continuous, it may take any of the 4 families of distribution: Uniform, Nor-

mal, Gamma, and Mixture of two normal with the same variance and same weight. The mean

and variance of the distribution, given the knowledge of the distribution family, will be used to

determine the distribution uniquely.

If the variable is discrete, we need to specify the probability for the variable in each level.

� If a variable is continuous, and has direct causes in the model, we need to specify the distribution

of the additive error term. Here again we allow 4 families of distributions: Uniform, Normal,

Normalized Gamma (a Gamma random variable minus its mean), and Mixture of two normal

with same variance and same weight. The mean of the error term must be 0, hence given the
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knowledge of the distribution family, the variance will be used to determine the distribution

uniquely.

Sometime it maybe extremely diÆcult to �nd an appropriate value for the error variance without

examining the whole model carefully. For example, suppose X1; � � � ; Xn are direct causes of Y in

the model, and Y = f(X1; � � � ; Xn)+ �, we may have no idea about how to specify the variance of

� so that it is not too large nor too small. In this case, we can specify a positive number r, which

is de�ned as:

r =
Var(�)

Var(f(X1; � � � ; Xn))

� If a variable has direct causes in the model, we need to specify the functional relation between

the variable and its causes. Here there are several factors we need to consider:

{ Suppose the variable Y is continuous, we need to specify whether the functional relation

between the variable Y and its direct causes X1; � � � ; Xk can be represented as:

Y =

kX
i=1

fi(Xi) + �

or only as:

Y =

k�1X
i=1

fi(Xi; Xi+1) + fk(Xk; X1) + �

or only as:

Y = f(X1; � � � ; Xk) + �

In the �rst case, we say that there is no interaction among the direct causes of Y . In the

second case, we say that there are pairwise interactions among the direct causes of Y . In the

third case, we say that there is a global interaction among the direct causes of Y .

{ If the variable Y is discrete, we need to specify the function that converts the function of its

direct causes into a multinomial distribution. Here we have three choices:

pi =
expffi(x1; � � � ; xk)gPm

j=1 expffj(x1; � � � ; xk)g

pi =
jfi(x1; � � � ; xk)jPm
j=1 jfj(x1; � � � ; xk)j

16



pi =
(fi(x1; � � � ; xk))2Pm

j=1(fj(x1; � � � ; xk))2
where X1; � � � ; Xk are direct causes of Y , m is the number of levels of Y , pi is the probability

of Y in the ith level, and fi(x1; � � � ; xk) are the function of X1; � � � ; Xn used to compute the

probability of Y in the ith level.

{ We also need to specify all of the function fi's appearing above.

The follow categories of functions are allowed to be used in the GAM model:

Polynomial functions with degree up to 5, rational functions, logarithm function, exponential

functions, and trigonometric function.

We will need to specify both the categories and the coeÆcients of the functions.

Sample Generator: The function of the sample generator should be clear from the previous discussion.

Here we want to point out that the sample generator is not only used to generate data from a model,

but also used to generate a random or partially random model. This is essential if we want to guarantee

the quality of our randomly generated GAM Models.

To illustrate this point, consider a continuous variables Y and its direct causes X1; � � � ; Xk. The

functional relation between Y and X1; � � � ; Xk should be:

Y = f(X1; � � � ; Xk) + �

where f may be a linear combination of functions allowed in a GAM model.

Now if the f is random chosen, it may happen that the in
uence of Xi on Y is ignorable. We de�nitely

want to avoid this kind of situation. One way to solve the problem is to draw random functions

iteratively:

1. First, randomly choose function f .

2. Generate data using the chosen function, check the ratio of the variance of f(X1; � � � ; Xk) to the

variance of f(X1; � � � ;E(Xi); � � � ; Xk) for each i.

3. If some ratio is extremely small, choose f again. Otherwise, stop.

Similarly, if Y is a discrete variable, we would like to use a similar strategy to choose functions of its

direct causes such that the probability of Y in each of its levels is not extremely small.
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Figure 3: DAGs for Simulation Study

4.3 Graph

To test the GAM approach to non-parametric conditional independence test with AIC and BIC scores, we

generated simulated samples based on 4 graphical structures.

All the samples are based on the 4 graphs shown in �gure 3:

4.4 Samples

1. For the �rst graph, 150 continuous samples were generated: 50 of them with normal error, 50 with

gamma, and 50 with mixture of normal error.

Another 100 discrete samples were generated: 50 of them with 4-level discrete variables, and 50 with

8-level discrete variable.

Another 50 mixture of continuous and discrete samples were generated: x1; x4: continuous; x2; x5:
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discrete; x3: could be either.

2. For the second graph, 300 continuous samples were generated: 150 of them with no interaction between

parents, and 150 with interaction between parents. Among each group of 150 samples: 50 of them

with normal error, 50 with gamma, and 50 with mixture of normal error.

Another 100 discrete samples were generated: 50 of them with 4-level discrete variables, 50 with 8-level

discrete variable.

Another 50 mixture of continuous and discrete samples were generated: x1; x3; x4: continuous, x2; x5:

discrete.

3. For the third graph, 450 continuous samples were generated: 150 of them with no interaction among

parents, 150 with pairwise interaction between parents, and 150 with global interaction among parents.

Among each group of 150 samples: 50 of them with normal error, 50 with gamma, and 50 with mixture

of normal error.

Another 100 discrete samples were generated: 50 of them with 4-level discrete variables, 50 with 8-level

discrete variable.

Another 150 mixture of continuous and discrete samples were generated: x1: continuous, x3: discrete,

x4: continuous, x2, x5: could be either.

4. For the fourth graph, 450 continuous samples were generated: 150 of them with no interaction among

parents, 150 with pairwise interaction between parents, and 150 with global interaction among parents.

Among each group of 150 samples: 50 of them with normal error, 50 with gamma, and 50 with mixture

of normal error.
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5 Discussion

5.1 General Observations

By looking at the tables presented above, we can get the following observations:

1. It is easy to see that the GAM method should not be applied to discrete samples, for it will always

choose the simpler regression model. For example, for the 100 discrete samples generated from the

�rst DAG in �gure 3, when testing whether X1??X5jX3, the GAM test using the BIC score said

that X1 and X5 are independent given X3 for all the 100 samples. This happens to be a coditional

independence relation entailed by the DAG. However, when testing whetherX1??X3jX5, the GAM test

using the BIC score again claimed that X1 and X3 are independent given X5 for all the 100 samples.

Unfortunately, as a matter of fact, the DAG implies that X1 and X3 are not independent conditional

on X5.

This tendency of choosing simpler regression model, hence the tendency of accepting the conditional

independence hypothesis, is not surprising, for the GAM regression is not designed for all discrete

predictors. When all predictors are discrete, the GAM regression will try to partition the sample into

a contingency table according to the predictors, and try to regress the response variable on each cell

of the contingency table.

2. Comparing the test result obtained with the AIC score and those with the BIC score, it is clear that

the BIC score prefers simpler models, compared to the AIC score. For example, for the 149 continuous

samples (each with sample size 500) generated from the �rst DAG in �gure 3, when testing whether

X1??X5jX3, the GAM test using the BIC score said that X1 and X5 are independent given X3 for 132

samples, while the GAM test using the AIC score said that X1 and X5 are independent given X3 for

83 samples. When testing whether X1??X3jX5, the GAM test using the BIC score again claimed that

X1 and X3 are not independent given X5 for 107 samples, while the GAM test using the AIC score

said that X1 and X3 are not independent given X5 for 122 samples.

This is exactly what we expected, because the di�erence between AIC and BIC, up to a constant

factor, is that the former has a penalty term equal to 2 times the equivalent degree of freedom, while

the later has a penalty term equal to log(n) times the equivalent degree of freedom, with n being the

samples size. Clearly, for any n > e2, BIC will penalize model complexity more heavily than AIC.

3. In terms of the interaction among parents of a child variable, there is no signi�cant di�erence in

test accuracy among the three cases: no interaction, pairwise interaction, and global interaction.

20



For example, from the second DAG in �gure 3, 50 continuous samples with no interaction among

parents of child variables, and 50 continuous samples with global interactions among parents of child

variables, were generated. Seven conditional independence tests were performed on these samples.

For the samples allowing no global interaction, the average accuracy of conditional independence tests

using the BIC score is approximately 0.69, while for the samples allowing global interactions, the

average accuracy is approximately 0.70. This is more or less a surprise, considering the violation of

the assumption of GAM model when pairwise or global interactions present in the samples.

One plausible explanation is that, although the additive assumption is violated, adding one more pre-

dictor that is not conditionally independent of the response variable given the current set of predictors

can still further reduce the deviance of the �tted model. Another explanation is that our test performs

poorly in cases where whether the parents are interacting with each other should make a di�erence,

and the poor performance to some extent obscures the otherwise identi�able di�erence.

4. In terms of error distribution, we �nd that the accuracy of the GAM tests on the samples with mixture

of normal error distribution usually is as good as, or even slightly better, than that of the GAM tests

on the samples with norm error distriubtion. For example, for the 49 continuous samples (each with

sample size 500) with normal error generated from the �rst DAG in �gure 3, the average accuracy

of 9 conditional independence tests with BIC score is 0.77, while the average accuracy of conditional

independence tests on the 50 continuous samples with mixture of normal error generated from the

same DAG is 0.81.

One explanation of this result is that, because the mixture of normal error distribution in our simulation

study is actually a mixture of two equally weighted normal distributions with identical variance but

di�erent mean, it is a symmetric error distribution. Hence, the GAM regression method works well.

On the other hand, the behavior of the GAM test for the samples with Gamma error distribution does

di�er from that for the samples with symmetric error distribution, i.e., normal or mixture of normal. If

we only look at the conditional independence test results for the samples with Gamma error, we could

�nd that the GAM test is less prone to simpler models for samples with Gamma error. For example,

for the 50 continuous samples with Gamma error generated from the �rst DAG in �gure 3, using the

BIC score, the average accuracy of the 5 tests where the true models are independent models is 0.74,

while the average accuracy of the 4 tests where the true models are independent models is 0.79, while

for the samples with normal error or mixture of normal error, using the BIC score, the average test

accuracies are higher when the true models are independent models, and lower when the true models
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are dependent models. We believe this is because under the GAM model, the predictors cannot predict

the response variable very well, so adding one more predictor usually can further reduce the deviance

of the �tted model.

5. When using conditional independence test results to search for causal patterns, the performance is

not satisfactory. To improve the the accuracy of conditional independence testing, we also tried the

following two-way method, using the BIC score:

Suppose we want to test whether X and Y are independent given Z. We will apply GAM regression

to the following 4 models:

M1 : X = f(Y ) +

kX
i=1

gi(Zi) + �1

M2 : X =
kX
i=1

hi(Zi) + �2

M3 : Y = f 0(X) +
kX
i=1

g0i(Zi) + �1

M4 : Y =

kX
i=1

h0i(Zi) + �2

We will say that X??Y jZ if and only if the BIC score of M2 is less than or equal to that of M1, and

the BIC score of M4 is less than or equal to that of M3.

Given that BIC score prefers the simpler model, this method should improve the performance of

conditional independence test. However, from the simulation result, this method is not satisfying

either. In general, the returned causal patterns contain more edges that are in the true causal pattern,

but also contain more edges that are not in the true causal pattern. This is consistent with the fact

that the two-way test method prefers the more complex model compared to the one-way method.

The reason why this does not improve the test accuracy probably is because a correct causal pattern

requires we get the correct conditional independence information in most cases.

5.2 AIC and BIC

To get some insight into the test results, it is helpful to take a closer look at the AIC and BIC score.

Recall that the formulae for AIC, BIC, and noise variance are:
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AIC = RSS + 2 df �2

BIC = RSS =�2 + log(N) df

�2 = RSS0 = (N � df0)

Substitute the formula for �2 to the formulae for AIC and BIC, we get:

AIC = RSS + 2 df
RSS0
N � df0

BIC =
RSS

RSS0
(N � df0) + log(N) df

Suppose we are going to test whether a random variable X is independent of a random variable Y given

a set of random variable Z1; � � � ; Zk. That is, we are going to test the two alternative models MZ and MY;Z

as de�ned in equations 16) and 15. Let RSSZ and dfZ be the residual sum square and degree of freedom

for the model MZ , and RSSY;Z and dfY;Z for the model MY;Z . Then, using BIC, the test will support the

hypothesis that X is independent of Y given Z1; � � � ; Zk if and only if:

RSSZ
RSS0

(N � df0) + log(N) dfZ <
RSSY;Z
RSS0

(N � df0) + log(N) dfY;Z

() RSSZ �RSSY;Z
RSS0

<
log(N)

N � df0
(dfY;Z � dfZ)

Similarly, if using AIC, the test will support the hypothesis that X is independent of Y given Z if and

only if:

RSSZ �RSSY;Z
RSS0

<
2

N � df0
(dfY;Z � dfZ)

From the above analysis, it is clear that, in this simulation study, when using the AIC and BIC scores

to do conditional independence testing, what we really care about is the sign of the di�erence between

RSSZ �RSSY;Z
RSS0

, which is the ratio of the amount of reduced deviance by adding an extra predictor to the

deviance of the most complicated model, and
2

N � df0
(dfY;Z � dfZ) or

log(N)

N � df0
(dfY;Z � dfZ).In other words,

we are not really making full use of the information provided by the AIC and BIC scores. This suggests that
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we might improve the test procedure by taking into account the actual value of the di�erence between the

scores of two alternative models.

To illustrate the use of the actual value of the di�erence between the scores of two alternative models,

suppose we want to use BIC score to test the alternative models MZ and MY;Z . Let BICZ refer to the BIC

score for model MZ , BICY;Z refer to the BIC score for model MY;Z . Clearly, unless something wrong with

the gam regression, we should have:

RSSY;Z < RSSZ ; dfY;Z > dfZ

If we use the default smooth parameter when doing the GAM regression, in most tests, we should get:

dfY;Z � dfZ � 4

Combining the two above inequalities, we have:

BICY;Z �BICZ < log(N)[dfY;Z � dfZ ] � �4 log(N)

Note that there is virtually no lower bound for the above di�erence.

Now suppose that X??Y j(Z1; � � � ; Zk), then the di�erence between BICY;Z and BICZ should be positive,

and we know that the di�erence cannot be greater than log(N)[dfY;Z�dfZ ]. (Higher score means less preferred
model.) Of course, if the test is inaccurate, we could end up with a negative di�erence. But usually this

di�erence should be small.

On the other hand, if X 6??Y j(Z1; � � � ; Zk), then the di�erent between BICY;Z and BICZ should be

negative. Although quite often we �nd that this di�erence is positive, in some cases, we may get a negative

di�erence with a large absolute value compared with log(N)[dfY;Z � dfZ ]. In this case, we are pretty sure

that the dependence relation is true.

5.3 Beyond AIC and BIC

The GAM regression actually provides far more information than the AIC and BIC scores. Some information

may help to identify situations where the GAM model is not applicable.

One way to see whether a GAM regression model is applicable to some sample is to look at the degrees of

freedom of the GAM regression model. Usually a large number of degrees of freedom of a regression model

suggests that this model is not a good model of the sample data. In our simulation study, we �nd that, for

a sample with Gamma error, the GAM regression tends to return a regression model with unexpected large

degrees of freedom. For example, consider the 149 continuous samples (each with sample size 500) generated

from the �rst DAG in �gure 3. When we regress X2 on X3 and X4, because the default smoothing parameter
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for the spline smoother used in the GAM regression is roughly corresponding to 4 degrees of freedom, the

regression model for each sample should have roughly 9 degrees of freedom: 4 for each predictor, and 1 for

a constant additive term. This is the case for the 99 samples with normal error or mixture of normal error.

The degrees of freedom of the regression models for these samples are all between 8.5 and 9.5. However, for

the 50 samples with Gamma error, the degrees of freedom of the regression model for 31 of them are greater

than 9.5|some models have more than 100 degrees of freedom.

Some information provided by the GAM regression can be used to predict the reliability of the GAM

conditional independence test based on AIC or BIC scores.

Consider a set of variables V = fX;Y; Z1; � � � ; Zk; U1; � � � ; Umg. Suppose we want to test whether

X??Y j(Z1; � � � ; Zk). Let null deviance be the residual sum square of the model X � 1, noise deviance

be the residual sum square of the model X � f(Y ) +
Pk

i=1 gi(Zi) +
Pm

j=1 hj(Uj), independent deviance be

the residual sum square of the model X �Pk
i=1 li(Zi), and dependent deviance be the residual sum square

of the model X � s(Y )+
Pk

i=1 ti(Zi). It turns out that the 3 ratios of noise deviance, independent deviance,

and dependent deviance, to the null deviance, can help us to estimate the sensitivity of the GAM conditional

independence test to small perturbation in the GAM regression model, hence can be used to estimate the

reliability of the conditional independence test.For example, when using the BIC score, we could use the

following heuristic rules:

1. If the noise deviance is very small compared to the null deviance, and the independent deviance is not

very close to the null deviance, then if the result is dependence, it is a weak dependence, and if the

result is independence, it is a strong independence.

Justi�cation: a small noise deviance implies that the GAM test is too sensitive to small di�erence in

residual sum squares, hence tends to choose the more complex model.

2. If the noise deviance is relatively large compared to the null deviance, and the independent deviance is

not very close to the null deviance, then if the result is dependence, it is a strong dependence, and

if the result is independence, it is a weak independence.

Justi�cation: a large noise deviance implies that the GAM test is too insensitive to small di�erence in

residual sum squares, hence tends to choose the simpler model.

3. If the independent deviance and the dependent deviance are very close to the noise deviance, then if

the result is dependence, it is a weak dependence, and if the result is independence, it is a weak

independence.
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Justi�cation: If two alternative models both have residual sum squares almost as small as the most

complicated model, the GAM test really could not tell which model is better.

To see how these rules work, we could apply them to one of the most problematic test results in our

simulation study: the test of whether X2??X4jX3 using the BIC score, where the true model is X2??X4jX3.

Consider the 49 continuous samples (each with sample size 500) with normal error generated from the

�rst DAG in �gure 3. The GAM tests using the BIC score have an accuracy of 0.76, compared to an

average accuracy of 0.90 for the GAM tests using the BIC score for these samples on the other 4 conditional

independence hypotheses, where the true hypotheses are the conditional independence hypotheses. If we

take a closer look at the GAM regression results for the 12 samples where the GAM test fails, we �nd for

10 of them, the ratio of the noise deviances to the null deviance is less than 0.12; and the for another 2 of

them the ratio of the independent deviance to the null deviance is greater than 0.95. Therefore, according

to the �rst and the third heuristic rules, for all of these 12 samples, the resulting dependence relations are

weak dependence.

Moreover, if we look at the GAM regression results for the 37 samples where the GAM tests are correct,

according to our heuristics, we are con�dent about 28 of them. This implies that, if we restrict ourselves

only to those test results about which we are con�dent, the GAM test procedure is useful for more than half

of the times.

26



6 Future Work

If we want to further improve the accuracy of conditional independence test, we might want to consider the

following options:

1. Make the distribution of the gam function more adaptive. Currently, for continuous data, we use

gaussian. Unfortunately, while other distributions are allowed by gam, none of them looks like a

better choice.

2. Change the choice of smoothing parameter, or, more precisely, the choice of degree of freedom for spline

smoothing. Currently we use the default value,which is 4. But we might try to �nd the optimal values

for each predictor in the GAM regression model. One problem with this approach is that choosing the

smoothing parameter adaptively is usually compuationally expensive.

3. Change the way to measure the model complexity. Currently, we use one de�nition of the equivalent

degrees of freedom. We could try other ways of measuring the model complexity. For example, we

could use the generalized degrees of freedom.14

A more promising approach, still based on GAM method, is to train some decision trees with much more

information than we currently used to get the sign of the di�erence in AIC or BIC scores. For example, to

test whether X and Y are independent give Z, we may �rst train a decision tree with the di�erences of the

BIC scores for the 2 alternative regression models, null deviance, noise deviance, independent deviance, and

dependent deviance. (See de�nitions of these deviances in section 5.3.) Then we train another decision tree

to estimate how con�dent we are about the results given by the the �rst tree.

An alternative to the constraint based search is the use of maximum likelihood search. Given a DAG,

assuming causal suÆciency and normal error term, the GAM approach can provide, for each random variable

X , an estimate of its log-likelihood:

�RSS
2�2

� log(�) + C

Thus, for a set of m random variables X = fX1; � � � ; Xmg, we could choose a DAG G that minimizes:

R0
1 =

mX
i=1

"
RSSXijPar(XijG)

�2
XijPar(XijG)

+ log(�2XijPar(XijG)) + log(N) dfXijPar(XijG)

#

where ParXijG is the set of variables that are parents of Xi in G.

Equivalently, we can choose a G that minimizes:

14Ye (1999).
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R1 =

mX
i=1

�
log

�
RSSXijPar(XijG)

N � dfXijPar(XijG)

�
+ (log(N)� 1) dfXijPar(XijG)

�

Note that here we do not estimate the noise variance for each variable Xi based on a model that takes

fXigc as predictors. Rather, we estimate the noise variance based on graph G.

An improvement to the above formula is to replace the log-likelihood of each exogenous variable with the

value obtained from density estimation. For example, suppose we use kernel density estimation and some

bandwidth selection criterion. For each exogenous variable Xi, let fi be the estimated density function.

Then we would like to choose a G that minimizes:

R2 =
X

fi:jPar(XijG)j>0g

�
log

�
RSSXijPar(XijG)

N � dfXijPar(XijG)

�
+ (log(N)� 1) dfXijPar(XijG)

�
+

X
fi:jPar(XijG)j=0g

log(fi(Xi))

The new formula essentially removes the assumption that all exogenous variables have normal distribu-

tion.

To minimize R1 or R2, we could either apply GAM regression with a �xed degree of freedom, say, 4. Or

we could use some criterion to �nd optimal degree of freedoms for each regression. Obviously, the latter will

be computationally more expensive.

Also, it seems that the GAM method is sensitive to the direction of the regression. This is true especially

if the functional relation between parents and child is non-monotone on a rectangle with signi�cant measure.

Therefore, we may expect that the maximum likelihood approach should have a good chance to pick up a

model close to the true model. We can also use R2 to compare two statistically indistinguishable models.

Finally, one reason why we choose GAM over density estimation is the that the later method is subject

to the curse of dimensionality, hence is not applicable for high dimensional test. However, our simulation

result suggests that because of its poor accuracy, application of GAM method should also be restricted to

low dimensional tests. Therefore, we may want to explore the low dimension test with density estimation,

and see whether this will be a better approach.
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8 Appendix: Summary of Result

8.1 How to read the tables:

test The true model.

setting The types of the samples.

continuous/nominal/continuous and nominal The sample consists of only continuous/nominal

discrete/mixture of continuous and nomimal discrete data.

normal/gamma/mix-normal error The error terms and exogenous variables in the sample have

normal/gamma/mix-normal distributions.

4/8 level For discrete samples, each variable has 4/8 distinct levels.

aic Results of conditional independence test using the AIC score. The left column gives the number of

samples where the simpler model were accepted. The right column gives the portion of samples where

the true model were accepted. (Note that some times the true model was the simpler model, sometime

the true model was the more complicated one.)

bic Results of conditional independence test using the BIC score. The left column gives the number of

samples where the simpler model were accepted. The right column gives the portion of samples where

the true model were accepted. (Note that some times the true model was the simpler model, sometime

the true model was the more complicated one.)

# of samples Number of samples (of the type given by the setting column) for each conditional indepen-

dence test.

8.2 First Graph|v5n1

Test for samples of size 2000

test setting aic bic # of samples
x1??x5jx3 continuous, normal error 28 0.60 42 0.89 47
x1 6??x3jx5 continuous, normal error 6 0.87 11 0.77 47
x1??x5jx4 continuous, normal error 23 0.49 39 0.83 47
x1 6??x4jx5 continuous, normal error 10 0.79 20 0.57 47
x1 6??x5 continuous, normal error 9 0.81 22 0.53 47
x1 6??x2 continuous, normal error 2 0.96 3 0.94 47

30



test setting aic bic # of samples
continuous, normal error 27 0.55 46 0.94 49
continuous, gamma error 27 0.54 39 0.78 50

x1??x5jx3 continuous, mix-normal error 29 0.58 47 0.94 50
nominal, 4 levels 50 1.00 50 1.00 50
nominal, 8 levels 50 1.00 50 1.00 50
continuous and nominal 44 0.88 50 1.00 50

test setting aic bic # of samples
continuous, normal error 10 0.80 17 0.65 49
continuous, gamma error 8 0.84 13 0.74 50

x1n??x3jx5 continuous, mix-normal error 9 0.82 12 0.76 50
nominal, 4 levels 49 0.02 50 0.00 50
nominal, 8 levels 47 0.06 50 0.00 50
continuous and nominal 15 0.70 21 0.58 50

test setting aic bic # of samples
continuous, normal error 24 0.49 42 0.86 49
continuous, gamma error 24 0.48 35 0.70 50

x5??x1jx3 continuous, mix-normal error 25 0.50 47 0.94 50
nominal, 4 levels 47 0.94 50 1.00 50
nominal, 8 levels 35 0.70 48 0.96 50
continuous and nominal 39 0.78 49 0.98 50

test setting aic bic # of samples
continuous, normal error 33 0.67 44 0.90 49
continuous, gamma error 35 0.70 43 0.86 50

x4??x2jx3 continuous, mix-normal error 34 0.68 45 0.90 50
nominal, 4 levels 46 0.92 48 0.96 50
nominal, 8 levels 47 0.94 50 1.00 50
continuous and nominal 45 0.90 49 0.98 50

test setting aic bic # of samples
continuous, normal error 9 0.82 13 0.73 49

x4 6??x3jx2 continuous, gamma error 8 0.84 11 0.78 50
continuous, mix-normal error 4 0.92 7 0.86 50

test setting aic bic # of samples
continuous, normal error 7 0.86 27 0.45 49

x1 6??x5 continuous, gamma error 3 0.94 9 0.82 50
continuous, mix-normal error 9 0.82 19 0.62 50

test setting aic bic # of samples
continuous, normal error 22 0.45 37 0.76 49
continuous, gamma error 23 0.46 33 0.66 50

x2??x4jx3 continuous, mix-normal error 28 0.56 39 0.78 50
nominal, 4 levels 49 0.98 50 1.00 50
nominal, 8 levels 36 0.72 47 0.94 50
continuous and nominal 37 0.74 48 0.96 50

test setting aic bic # of samples
continuous, normal error 19 0.39 43 0.88 49

x1??x5jx4 continuous, gamma error 22 0.44 35 0.70 50
continuous, mix-normal error 24 0.48 42 0.84 50
continuous and nominal 43 0.86 50 1.00 50
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test setting aic bic # of samples
continuous, normal error 14 0.71 25 0.49 49

x1n??x4jx5 continuous, gamma error 10 0.80 14 0.72 50
continuous, mix-normal error 13 0.74 17 0.66 50
continuous and nominal 21 0.58 36 0.28 50

8.3 Second Graph|v5n3

test setting aic bic # of samples
continuous, normal error, no interaction 16 0.68 26 0.48 50
continuous, gamma error, no interaction 9 0.82 17 0.66 50
continuous, mix-normal error, no interaction 11 0.78 20 0.60 50
continuous, normal error, global interaction 14 0.72 24 0.52 50

x1n??x2jx3 continuous, gamma error, global interaction 9 0.82 16 0.68 50
continuous, mix-normal error, global interaction 10 0.80 14 0.72 50
nominal, 4 levels 49 0.02 50 0.00 50
nominal, 8 levels 50 0.00 50 0.00 50
continuous and nominal 5 0.90 10 0.80 50

test setting aic bic # of samples
continuous, normal error, no interaction 19 0.62 35 0.30 50
continuous, gamma error, no interaction 15 0.70 30 0.40 50
continuous, mix-normal error, no interaction 16 0.68 37 0.26 50
continuous, normal error, global interaction 25 0.50 34 0.32 50

x1n??x2jx5 continuous, gamma error, global interaction 14 0.72 24 0.52 50
continuous, mix-normal error, global interaction 19 0.62 35 0.30 50
nominal, 4 levels 50 0.00 50 0.00 50
nominal, 8 levels 50 0.00 50 0.00 50
continuous and nominal 19 0.62 33 0.34 50

test setting aic bic # of samples
continuous, normal error, no interaction 37 0.74 49 0.98 50
continuous, gamma error, no interaction 38 0.76 49 0.98 50
continuous, mix-normal error, no interaction 37 0.74 50 1.00 50

x1??x5jx3 continuous, normal error, global interaction 45 0.90 50 1.00 50
continuous, gamma error, global interaction 29 0.58 45 0.90 50
continuous, mix-normal error, global interaction 36 0.72 49 0.98 50
continuous and nominal 34 0.68 49 0.98 50

test setting aic bic # of samples
continuous, normal error, no interaction 8 0.84 15 0.70 50
continuous, gamma error, no interaction 8 0.84 17 0.66 50

x1 6??x3jx5 continuous, mix-normal error, no interaction 8 0.84 14 0.72 50
continuous, normal error, global interaction 9 0.82 21 0.58 50
continuous, gamma error, global interaction 7 0.86 16 0.68 50
continuous, mix-normal error, global interaction 7 0.86 16 0.68 50

test setting aic bic # of samples
continuous, normal error, no interaction 26 0.52 33 0.66 50
continuous, gamma error, no interaction 18 0.36 27 0.54 50
continuous, mix-normal error, no interaction 27 0.54 42 0.84 50

x5??x1jx3 continuous, normal error, global interaction 26 0.52 41 0.82 50
continuous, gamma error, global interaction 22 0.44 33 0.66 50
continuous, mix-normal error, global interaction 23 0.46 40 0.80 50
continuous and nominal 43 0.86 49 0.98 50
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test setting aic bic # of samples
continuous, normal error, no interaction 12 0.76 16 0.68 50
continuous, gamma error, no interaction 3 0.94 7 0.86 50

x5 6??x3jx1 continuous, mix-normal error, no interaction 13 0.74 16 0.68 50
continuous, normal error, global interaction 11 0.78 14 0.72 50
continuous, gamma error, global interaction 5 0.90 7 0.86 50
continuous, mix-normal error, global interaction 15 0.70 18 0.64 50

test setting aic bic # of samples
continuous, normal error, no interaction 21 0.42 37 0.74 50
continuous, gamma error, no interaction 15 0.30 42 0.84 50

x1??x2 continuous, mix-normal error, no interaction 17 0.34 42 0.84 50
continuous, normal error, global interaction 27 0.54 42 0.84 50
continuous, gamma error, global interaction 16 0.32 30 0.60 50
continuous, mix-normal error, global interaction 21 0.42 39 0.78 50

test setting aic bic # of samples
x2n??x1jx3 continuous and nominal 22 0.56 41 0.18 50
x2n??x1jx5 continuous and nominal 42 0.16 49 0.02 50

8.4 Third Graph|v5n2

test setting aic bic # of samples
continuous, normal error, no interaction 34 0.68 46 0.92 50
continuous, gamma error, no interaction 31 0.62 43 0.86 50
continuous, mix-normal error, no interaction 41 0.82 48 0.96 50
continuous, normal error, pairwise interaction 37 0.74 49 0.98 50
continuous, gamma error, pairwise interaction 38 0.76 45 0.90 50
continuous, mix-normal error, pairwise interaction 40 0.80 49 0.98 50

x1??x3jx2 continuous, normal error, global interaction 38 0.76 49 0.98 50
continuous, gamma error, global interaction 29 0.58 41 0.82 50
continuous, mix-normal error, global interaction 43 0.86 50 1.00 50
nominal, 4 levels 50 1.00 50 1.00 50
nominal, 8 levels 50 1.00 50 1.00 50
continuous and nominal, no interaction 34 0.68 46 0.92 50
continuous and nominal, pairwise interaction 40 0.80 48 0.96 50
continuous and nominal, global interaction 32 0.64 46 0.92 50

test setting aic bic # of samples
continuous, normal error, no interaction 35 0.70 46 0.92 50
continuous, gamma error, no interaction 28 0.56 35 0.70 50
continuous, mix-normal error, no interaction 40 0.80 47 0.94 50
continuous, normal error, pairwise interaction 34 0.68 43 0.86 50
continuous, gamma error, pairwise interaction 38 0.76 45 0.90 50
continuous, mix-normal error, pairwise interaction 43 0.86 48 0.96 50

x3??x1jx2 continuous, normal error, global interaction 42 0.84 47 0.94 50
continuous, gamma error, global interaction 32 0.64 40 0.80 50
continuous, mix-normal error, global interaction 43 0.86 49 0.98 50
nominal, 4 levels 48 0.96 50 1.00 50
nominal, 8 levels 48 0.96 48 0.96 50
continuous and nominal, no interaction 40 0.80 47 0.94 50
continuous and nominal, pairwise interaction 36 0.72 47 0.94 50
continuous and nominal, global interaction 28 0.56 46 0.92 50

33



test setting aic bic # of samples
continuous, normal error, no interaction 29 0.42 40 0.20 50
continuous, gamma error, no interaction 24 0.52 37 0.26 50
continuous, mix-normal error, no interaction 36 0.28 41 0.18 50
continuous, normal error, pairwise interaction 31 0.38 44 0.12 50

x1n??x3jx2; x4 continuous, gamma error, pairwise interaction 35 0.30 42 0.16 50
continuous, mix-normal error, pairwise interaction 35 0.30 47 0.06 50
continuous, normal error, global interaction 32 0.36 43 0.14 50
continuous, gamma error, global interaction 21 0.58 34 0.32 50
continuous, mix-normal error, global interaction 38 0.24 44 0.12 50

test setting aic bic # of samples
continuous, normal error, no interaction 33 0.34 44 0.12 50
continuous, gamma error, no interaction 33 0.34 41 0.18 50
continuous, mix-normal error, no interaction 37 0.26 46 0.08 50
continuous, normal error, pairwise interaction 33 0.34 47 0.06 50
continuous, gamma error, pairwise interaction 33 0.34 43 0.14 50
continuous, mix-normal error, pairwise interaction 38 0.24 49 0.02 50

x1n??x3jx2; x5 continuous, normal error, global interaction 33 0.34 47 0.06 50
continuous, gamma error, global interaction 26 0.48 36 0.28 50
continuous, mix-normal error, global interaction 41 0.18 47 0.06 50
continuous and nominal, no interaction 23 0.54 36 0.28 50
continuous and nominal, pairwise interaction 34 0.32 42 0.16 50
continuous and nominal, global interaction 28 0.44 39 0.22 50

test setting aic bic # of samples
continuous, normal error, no interaction 32 0.36 45 0.10 50
continuous, gamma error, no interaction 25 0.50 34 0.32 50
continuous, mix-normal error, no interaction 35 0.30 45 0.10 50
continuous, normal error, pairwise interaction 35 0.30 44 0.12 50
continuous, gamma error, pairwise interaction 33 0.34 43 0.14 50

x3n??x1jx2; x5 continuous, mix-normal error, pairwise interaction 41 0.18 48 0.04 50
continuous, normal error, global interaction 40 0.20 47 0.06 50
continuous, gamma error, global interaction 26 0.48 39 0.22 50
continuous, mix-normal error, global interaction 40 0.20 46 0.08 50
continuous and nominal, no interaction 38 0.24 46 0.08 50
continuous and nominal, pairwise interaction 32 0.36 47 0.06 50
continuous and nominal, global interaction 25 0.50 43 0.14 50

test setting aic bic # of samples
continuous, normal error, no interaction 13 0.26 27 0.54 50
continuous, gamma error, no interaction 16 0.32 28 0.56 50
continuous, mix-normal error, no interaction 11 0.22 29 0.58 50
continuous, normal error, pairwise interaction 20 0.40 32 0.64 50
continuous, gamma error, pairwise interaction 13 0.26 21 0.42 50

x3??x5jx4 continuous, mix-normal error, pairwise interaction 17 0.34 35 0.70 50
continuous, normal error, global interaction 19 0.38 36 0.72 50
continuous, gamma error, global interaction 18 0.36 30 0.30 50
continuous, mix-normal error, global interaction 16 0.32 27 0.54 50
continuous and nominal, no interaction 38 0.76 48 0.96 50
continuous and nominal, pairwise interaction 41 0.82 49 0.98 50
continuous and nominal, global interaction 34 0.68 45 0.90 50
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test setting aic bic # of samples
continuous, normal error, no interaction 46 0.92 50 1.00 50
continuous, gamma error, no interaction 39 0.78 47 0.94 50
continuous, mix-normal error, no interaction 38 0.76 48 0.96 50
continuous, normal error, pairwise interaction 44 0.88 50 1.00 50
continuous, gamma error, pairwise interaction 36 0.72 45 0.90 50

x5??x3jx4 continuous, mix-normal error, pairwise interaction 42 0.84 50 1.00 50
continuous, normal error, global interaction 43 0.86 50 1.00 50
continuous, gamma error, global interaction 42 0.84 48 0.96 50
continuous, mix-normal error, global interaction 45 0.90 50 1.00 50
continuous and nominal, no interaction 46 0.92 50 1.00 50
continuous and nominal, pairwise interaction 45 0.90 49 0.98 50
continuous and nominal, global interaction 45 0.90 48 0.96 50

test setting aic bic # of samples
x5 6??x4 nominal, 4 levels 46 0.08 50 0.00 50

nominal, 8 levels 45 0.10 48 0.04 50

8.5 Fourth Graph|v5n6

test setting aic bic # of samples
continuous, normal error, no interaction 5 0.90 8 0.82 50
continuous, gamma error, no interaction 2 0.96 10 0.80 50
continuous, mix-normal error, no interaction 6 0.88 18 0.64 50
continuous, normal error, pairwise interaction 9 0.82 23 0.54 50

x1 6??x5jx2 continuous, gamma error, pairwise interaction 5 0.90 16 0.68 50
continuous, mix-normal error, pairwise interaction 2 0.96 13 0.74 50
continuous, normal error, global interaction 9 0.82 21 0.58 50
continuous, gamma error, global interaction 5 0.90 12 0.76 50
continuous, mix-normal error, global interaction 6 0.88 23 0.54 50

test setting aic bic # of samples
continuous, normal error, no interaction 13 0.74 27 0.46 50
continuous, gamma error, no interaction 14 0.72 25 0.50 50
continuous, mix-normal error, no interaction 16 0.68 34 0.32 50
continuous, normal error, pairwise interaction 20 0.60 34 0.32 50

x1 6??x5jx2; x3 continuous, gamma error, pairwise interaction 17 0.66 31 0.38 50
continuous, mix-normal error, pairwise interaction 15 0.70 33 0.34 50
continuous, normal error, global interaction 20 0.60 38 0.24 50
continuous, gamma error, global interaction 9 0.82 20 0.60 50
continuous, mix-normal error, global interaction 15 0.70 32 0.36 50

test setting aic bic # of samples
continuous, normal error, no interaction 36 0.72 46 0.92 50
continuous, gamma error, no interaction 33 0.66 44 0.88 50
continuous, mix-normal error, no interaction 33 0.66 45 0.90 50

x1??x5 continuous, normal error, pairwise interaction 28 0.56 47 0.94 50
jx2; x3; x4 continuous, gamma error, pairwise interaction 27 0.54 42 0.84 50

continuous, mix-normal error, pairwise interaction 37 0.74 48 0.96 50
continuous, normal error, global interaction 34 0.68 48 0.96 50
continuous, gamma error, global interaction 27 0.54 39 0.78 50
continuous, mix-normal error, global interaction 34 0.68 50 1.00 50
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test setting aic bic # of samples
continuous, normal error, no interaction 33 0.66 42 0.84 50
continuous, gamma error, no interaction 34 0.68 39 0.78 50
continuous, mix-normal error, no interaction 35 0.70 41 0.82 50
continuous, normal error, pairwise interaction 29 0.58 37 0.74 50

x2??x3jx1 continuous, gamma error, pairwise interaction 28 0.56 37 0.74 50
continuous, mix-normal error, pairwise interaction 34 0.68 41 0.82 50
continuous, normal error, global interaction 37 0.74 39 0.78 50
continuous, gamma error, global interaction 29 0.58 39 0.78 50
continuous, mix-normal error, global interaction 34 0.68 38 0.76 50

test setting aic bic # of samples
continuous, normal error, no interaction 25 0.50 37 0.26 50
continuous, gamma error, no interaction 33 0.34 38 0.24 50
continuous, mix-normal error, no interaction 25 0.50 35 0.30 50
continuous, normal error, pairwise interaction 28 0.44 35 0.30 50

x2 6??x3jx1; x5 continuous, gamma error, pairwise interaction 27 0.46 37 0.26 50
continuous, mix-normal error, pairwise interaction 31 0.38 38 0.24 50
continuous, normal error, global interaction 31 0.38 39 0.22 50
continuous, gamma error, global interaction 24 0.52 37 0.26 50
continuous, mix-normal error, global interaction 27 0.46 35 0.30 50

test setting aic bic # of samples
continuous, normal error, no interaction 2 0.96 9 0.82 50
continuous, gamma error, no interaction 9 0.82 13 0.74 50
continuous, mix-normal error, no interaction 5 0.90 10 0.80 50
continuous, normal error, pairwise interaction 4 0.92 13 0.74 50

x1 6??x2jx3; x4 continuous, gamma error, pairwise interaction 6 0.88 12 0.76 50
continuous, mix-normal error, pairwise interaction 2 0.96 10 0.80 50
continuous, normal error, global interaction 6 0.88 12 0.76 50
continuous, gamma error, global interaction 9 0.82 18 0.64 50
continuous, mix-normal error, global interaction 4 0.92 13 0.74 50
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