
Semi-supervised context-aware discovery of unknown audio concepts

Antonio Juarez1, Bhiksha Raj2, Rita Singh2

1Machine Learning Department, Carnegie Mellon University
2Language Technologies Institute, Carnegie Mellon University

{ajuarez,bhiksha,rsingh}@cs.cmu.edu

Abstract

Both defining new audio categories and annotating data that
belong to these is a problem yet hardly tackled, much less re-
solved. These problems need to be solved, however, if we are to
escalate the labeling of audio data from subjective manual an-
notation onto automatic audio discovery upon the vast amounts
of audio data available today. The lack of work on this matter
is understandable: audio data overlaps different semantic cate-
gories through a single channel, it is most often noisy, and any
application that works on large datasets needs to deal with these
problems. Additionally, relating semantic concepts to audio
data is a problem in itself: how can a system associate newly-
encountered acoustic data to concepts of which there is no data
available? In this paper we describe how we used a labeled
dataset to train reliable concept detectors for several semantic
categories, how we augmented unlabeled data with contextual
features through co-occurrence to and duration of known con-
cepts, and results that indicate the feasibility of this task. We
believe the design presented can serve as a general discovery
framework for audio-like sequential data in general.
Index Terms: audio, detection, discovery, clustering

1. Introduction
The research field of general audio understanding (as opposed
to speech-oriented applications) is maturing only recently, so
it is difficult to get ahold of data with good training labels.
The majority of annotations in available datasets are specific
to a problem or domain, so they tend to not generalize nor
easily merge with one another. In addition, the set of labels
that have been the focus of past annotations is very small rel-
ative to the entire space of semantic audio categories. Notice
this presents challenges beyond those encountered in traditional
speech recognition, where the phoneme category space is fi-
nite and known, and a ground-truth language model reduces the
space further by defining a subset of valid sound sequences.

While the problem of detection for specific domains
have shown great progress[12][15][17], their results are
solving real-world problems[10][11][13][14], and researchers
have attempted to model and parse the complete audio
domain[6][7][8][9][16], general audio understanding is still a
naturally noisy and ill-defined problem — there exists no uni-
versal audio model that lists the possible categories to rec-
ognize, nor is there a concept of validity in general sound
sequences, unlike those of a specific domain (i.e. speech
[18][19]). Nevertheless, relationships between sounds exist in
our world. Sounds correspond to local physical phenomena
which necessarily affect each other, and many sounds are of-
ten indicative of environments in which only a subset of sound
categories are likely to be present.

We think it is possible to apply the contextual information
provided by an existing concept detector (for known audio con-
cepts) onto the discovery of unknown semantic audio concepts.
To the best of our knowledge, this has not yet been attempted
by other researchers. If this task is feasible, we can learn to rec-
ognize new audio concepts, collect instances belonging to them,
insert them back into the detector, and extend the set of concepts
and contexts we are able to recognize. The vision of this project
is a system that takes in an initial set of binary detectors and
explores any amount of unlabeled audio data to automatically
discover semantically meaningful audio concepts.

2. Modeling the problem
We take two main steps in our approach to Audio Discovery. We
first design a general-purpose audio detector for which there is
any positive training data available, and test its effectiveness on
an isolated validation set. We aim to create detectors with high
precision, as their results are later used as inputs to the audio
discovery system. These detectors are implemented as a se-
quential graph search where the nodes are audio segments, with
edges between consecutive segments. This algorithm scores au-
dio segments with a classifier trained over all known concepts.

Our second step explores the discovery process of new au-
dio concepts through clustering with different feature sets. We
apply the concept detector trained in the previous step on a val-
idation set, which yields a full segmentation into known con-
cepts and unrecognized segments. The latter are clustered with
a well-known algorithm, and we measure the purity of the clus-
ters with respect to the true labels of their elements with an en-
tropy score. We represent the unrecognized audio segments ei-
ther with the acoustic feature set alone, or by appending two
types of contextual features to them. We then compare the
scores achieved by the different feature sets, and analyze the
results to determine whether concept co-occurrence can present
meaningful information to achieve a more correct clustering,
and thus discover data for new audio concepts.

3. Dataset and Experiments
3.1. Dataset description

3.1.1. Data Source

The dataset used in this project is a subsample of 108 tracks of
up to 32 seconds each from the BBC Sound Effects Library[1],
which contains sounds from all around the world and in dif-
ferent contexts. Track categories in the set include ”Africa,
the Natural World”, ”Schools and Crowds”, and ”Livestock”.
These 108 tracks were segmented into short clips of 2 second
durations.

All together we collected 5911 short audio segments, which



Figure 1: Label distribution in dataset

Figure 2: GMM Featurization

were crowd-annotated on Amazon Mechanical Turk. The labels
obtained had a typical heavy concentration on the most frequent
labels; their distribution is shown in Figure 1. We chose the 20
most frequent labels (out of over 300) as our training concepts.

The audio segments were then converted into standard
MFC format. All audio was standardized to mono 32Kb/s,
and Fourier transforms were computed on 0.025s Hamming-
window frames with 60% overlap. The magnitude values in the
50Hz-10kHz frequency range were passed through 60 triangu-
lar filters to obtain the 13 most significant MFC coefficients.

3.1.2. Signal Featurization

To convert varying-length MFC sequences into fixed-length
vectors appropriate for traditional classification, we trained a
64-dimensional Gaussian Mixture Model as a Universal Audio
Model (UAM) on a large unlabeled audio dataset[2] contain-
ing 112 hours of unlabeled audio from varied categories and
in different recording environments. We then converted our la-
beled MFC sequences into fixed-length feature vectors by cre-
ating GMM supervectors, which represent the audio sequences
in terms of our UAM. This approach is based on the one used by
[16]. All MFC frames in an audio sequence are clustered by as-
signing each frame to the UAM cluster from which it was most
likely generated. We calculate the mean vector and the propor-
tion of MFC frames assigned to each mode, and we concatenate
these values into a single feature vector. For 13 dimensions and
64 modes, this resulted in a feature set of dimensionality 896.
A diagram of the featurization process is depicted in Figure 2.

Figure 3: Bagging Multi-Label Classifier

3.2. Classification, Segmentation, and Clustering

3.2.1. Classification

We trained a binary 200-tree random forest classifier[20] for
each of the 20 labels shown in Figure 1. We then trained
a 21-label random forest classifier with 40 trees upon the 20-
dimensional feature space consisting of the scores output by
the 20 binary classifiers upon an instance. The possible output
classes are the original set of 20, plus one labeled 〈OTHER〉,
to which all other less-occurring labels belong. The 〈OTHER〉
label serves later as the identifier for unrecognized segments.

This two-level classifier design is similar to the approach
described in [3], pg. 1765, and is depicted in Figure 3. We
chose this bagging design because it allows for subsequent in-
troduction of new concepts without full re-training, which we
envision the system to do on a regular basis. We evaluated the
performance of this classifier through 2-fold cross-validation on
the dataset; the results are shown in table 1.

Table 1: Multi-label performance, 2-fold Cross-Validation

3.2.2. Segmentation

We then built a concept detector with the trained multi-label
classifier as the core scoring mechanism. The recognition
mechanism is a graph search similar to that of a typical speech
recognizer, but it uses fixed-length feature classifiers in place



Figure 4: An example output of the concept detector

Figure 5: Segmentation pseudocode

of HMMs. The segmentation algorithm is as follows: we keep
a set of the best sequence candidates accumulated so far, from
which we regularly prune the lowest-scoring elements. At each
time point, we take the set of ending times of our best se-
quences, and use each of them as the starting point of a new
clip that ends at the current time frame. Each of these clips is
scored with the 21-label classifier, and appended to the exist-
ing best sequences. The lowest-scoring complete sequences are
then pruned out. A depiction of one such candidate sequence
is shown on Figure 4, and pseudo-code for the algorithm is in
Figure 5.

We applied this recognizer on an isolated subset of our data,
with a step size of 1 second and a maximum number of best can-
didate sequences of 40. We evaluate track-level precision and
recall scores for the set: a true positive occurs if a category was
recognized in a track that actually contained that label, a false
positive if a recognized category is not contained in that track,
and a false negative if a category in a track was not recognized
at all. Results for this evaluation are shown in table 2.

3.2.3. Clustering

We ran clustering experiments on the data to explore whether
clustering an audio set would naturally find semantic categories.
We clustered this same dataset (unlabeled) with K-Means —
chosen due to its sensitivity to scaling — and scored the dif-
ferent clusterings by their cluster entropy score. We define the
cluster entropy score for a clustering C and labels L as follows:

Score(C) =
∑
c∈C

p(c) ∗H(L|c) (1)

Table 2: Track-level segmentation performance

where H is the binary entropy function. This score repre-
sents the expected entropy of a cluster with respect to the labels
of the segments it contains. A perfect clustering, where each
cluster corresponds to one label and viceversa, would incur a
score of 0, while a random clustering with cluster sizes equal
to the true label distributions represents the baseline entropy to
improve upon.

3.2.4. Contextual Augmentation

To evaluate the validity of augmenting the acoustic feature set
with contextual features, we define two simple contextual fea-
ture vectors based on concept co-occurrence: S1 and S2. The
former holds only binary co-occurrence information, while the
values of S2 are proportional to the durations of other known la-
bels. We also define a weight w, which determines the relative
importance between contextual and acoustic features.

Let L be the set of known labels, and SEG the set of
(clip,label) segments output by our detector. Then the coef-
ficients of our contextual feature vectors S1 and S2, each of
length |L|, for any isolated audio segment are:

S1i =
∑

seg∈SEG

w ∗ I(seglabel ∗ Li) (2)

S2i =
∑

seg∈SEG

w∗I(seglabel∗Li)∗Duration(segclip) (3)

We call the above the context-binary and context-duration
features, respectively, and we append them to the original
acoustic features for our clustering experiments. Since the ef-
fects of this linear weighting method will vary according to the
clustering algorithm used, for our experiments in this section
we only used the K-Means algorithm, where K was set to 1.2
times the number of true labels.

We used the concept detector described in the previous sec-
tion to segment an isolated validation set, and we extract those
segments recognized as 〈OTHER〉 as the unrecognized labels
in our set. We then featurized these segments as GMM super-
vectors as described in 3.1.2, normalized them to zero-mean
and one-variance, and appended the contextual features (S1
or S2) to create our augmented feature set. Altogether we
collected three different feature sets: acoustic-only or unaug-
mented, context-binary, and context-duration.



Figure 6: Entropy scores for feature sets with/without context

Table 3: p-values for the Wilcoxon test between feature sets
H1 : ScoreDist(A) > ScoreDist(B) p-value

A B
Unaugmented Context-Binary 9.21E-3

Context-Binary Context-Duration 3.60E-5
Unaugmented Context-Duration 4.06E-5

We considered the most frequent 40 labels (as the first
20 are known categories), clustered and evaluated them as de-
scribed in section 3.2.3, and compared their scores against the
acoustic-only feature sets. Figure 6 plots the scores obtained
for both context-binary and context-duration feature sets against
different values of w, and compares them against the scores for
the unaugmented feature sets and the random baseline.

The significance of the score differences between the fea-
ture sets obtained was evaluated through a Wilcoxon signed-
rank test[21] at a significance level of α = 0.05, pairwise be-
tween all three feature sets. The p-values obtained for all three
pairwise comparisons are summarized in table 3.

4. Data Analysis
4.1. Classification results

Cross-validation results (displayed in table 1) over the origi-
nal 5911 segmented audio clips display excellent discrimina-
tion power between the 21 classes, showing that the classifier
manages to correctly extract the discriminatory features from
the dataset. This allows us to apply them confidently on the
subsequent steps of the project.

4.2. Segmentation results

The results on table 2 show that meaningful classes such as wa-
ter, horse, and engine can be correctly recognized in the absence
of segment boundary information. We notice precision tends to
score significantly higher than recall — in the absence of insuf-
ficient discriminatory information, the recognizer prefers to as-
sign labels with a high prior probability, like static or 〈OTHER〉.
The speech category seems to score high across all different pa-
rameterizations, which is not surprising, as speech is known in
the audio field to be highly recognizable.

These results are encouraging, as they align with our goals.
The system that we envision will discover new semantic audio
concepts by recognizing known ones, but it need not recognize
all of them — it is more important that the detections be reliable.

4.3. Clustering results

As seen in figure 6, the mean entropy score is diminished from
the random baseline by 0.63 bits through acoustic clustering
alone. This reduction is furthered by the addition of contextual
features, both context-binary and context-duration. Context-
binary features contribute up to a 0.05 bit decrease, and though
the error margins’ sizes are comparable to the difference, the
0.00921 p-value output by the Wilcoxon test indicates that co-
occurrence alone is a meaningful feature for concept discovery.

Context-duration features draw a clearer trend. Their en-
tropy scores are consistently lower than either acoustic-only or
context-binary features, and the Wilcoxon test confirms the ob-
servation. This difference grows with the contextual weight up
to w = 20, then stabilizes at 0.13 bits lower than the unaug-
mented score. This tells us that concept duration features con-
tain information meaningful to audio discovery, more so that
co-occurrence alone, and encourages us to investigate further.

5. Conclusions and Future Work
We have presented a potential framework for the discovery
of novel audio categories in unlabeled data. The first part of
this framework is the design of a reliable concept detector for
general-purpose audio, given sufficient training data for each
category. These data are assumed to be fairly precise, espe-
cially if positive examples are not abundant. Experiments show
that this detector incurs in high-precision performance, which
allows for high reliability on a meaningful subset of categories,
and appropriate behavior for our clustering experiments.

The second part of this framework, which attempts discov-
ery with data clustering, are in line with intuition: signals from
different audio categories will tend to be clustered separately,
and they lower the entropy score by as much as 0.63 bits. Con-
textual features take this a notch further, and reduce the score
by up to 0.13 bits. Both these results strengthen the belief that
discovery of unknown audio concepts is a feasible task, that
concept co-occurrence and duration are indicative of an audio
clips category, and encourage us to further investigation. These
findings strengthen the hypothesis that discovery of unknown
audio concepts is a feasible task, and that the framework and
techniques presented may help achieve it.

The next steps to take in this line of research are twofold.
Firstly, a larger labeled dataset is required to validate the results
expressed in this paper. The concept detector is expected to
display high track-level precision, and the cluster entropy score
is expected to decrease when contextual information is added to
the acoustic feature sets, more so with context-duration features.

Secondly, the parameter space of the system could use fur-
ther exploration. The parameters chosen so far are a result of
casual search, and a systematic approach would perhaps eluci-
date trends and optimum values for the parameters in this frame-
work. Parameters to be considered include the kinds of classi-
fier used, step size and pruning values for the detector, and the
definition of contextual feature sets. While the mentioned con-
textual feature sets possess meaningful information for an audio
clip, more sophisticated features can be designed with informa-
tion like concept proximity and leverage of ontologies. This
broader scope of work was not yet attempted due to a lack of
sufficient data to reliably extrapolate upon.

We hope that the steps mentioned above help lay the foun-
dation for creating a completely automated system capable of
not only recognizing known labels in audio, but also of discov-
ering new categories of audio in an unsupervised fashion.
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