
FilterBoost: Regression and Classification on Large Datasets

Joseph K. Bradley jkbradle@cs.cmu.edu

Machine Learning Department
Carnegie Mellon University

Data Analysis Project

Joint work with Robert E. Schapire schapire@cs.princeton.edu

Advisor: Carlos Guestrin guestrin@cs.cmu.edu

Abstract

We study boosting in the filtering setting, where the booster draws examples from an oracle
instead of using a fixed training set and so may train efficiently on very large datasets.
Our algorithm FilterBoost, which is based on a logistic regression technique proposed by
Collins et al. (2002), requires fewer assumptions to achieve bounds equivalent to or better
than previous work. Our proofs demonstrate the algorithm’s strong theoretical properties
for both classification and conditional probability estimation, and we validate these results
through extensive experiments. Empirically, our algorithm proves more robust to noise and
overfitting than batch boosters in conditional probability estimation and proves competitive
in classification.

We give several extensions of FilterBoost to the multiclass case, proving PAC bounds on
each. In particular, we make use of the ideas of pseudoloss and Error-Correcting Output
Codes used by Freund and Schapire (1997) and Schapire (1997) to create easily imple-
mentable boosters, and we show that the generalization of Output Codes by Allwein et al.
(2000) extends to FilterBoost. This work represents one of the first studies of boosting-by-
filtering for multiclass problems.

FilterBoost: Regression and Classification on Large Datasets

Contents

1 Introduction 3
1.1 Boosting . 3
1.2 Boosting-by-Filtering . 4
1.3 Related Work . 5

2 The FilterBoost Algorithm 5
2.1 Analysis: Conditional Probability Estimation 7
2.2 Analysis: Classification . 7
2.3 Comparison with Previous Algorithms . 11
2.4 Confidence-Rated Predictions . 12
2.5 Implementation Details . 12

3 Multiclass and Multilabel Classification 13
3.1 FilterBoost.M2 . 14
3.2 FilterBoost.OC . 16
3.3 Allwein et al. (2000) in the Filtering Setting 18

4 Experiments 19
4.1 Experimental Setup . 20
4.2 Running Time . 20
4.3 Conditional Probability Estimation . 21
4.4 Classification . 24

5 Concluding Remarks 26

2

FilterBoost: Regression and Classification on Large Datasets

1. Introduction

Boosting provides a ready method for improving existing learning algorithms for classifi-
cation. Taking a weaker learner as input, boosters use the weak learner to generate weak
hypotheses which are combined into a classification rule more accurate than the weak hy-
potheses themselves. Boosters such as AdaBoost (Freund and Schapire, 1997) have shown
considerable success in practice.

Most boosters are designed for the batch setting where the learner trains on a fixed
example set. This setting is reasonable for many applications, yet it requires collecting
all examples before training. Moreover, most batch boosters maintain distributions over
the entire training set, making their computation and storage requirements costly for very
large datasets. To make boosting feasible on larger datasets, learners can be designed for
the filtering setting. The batch setting provides the learner with a fixed training set, but
the filtering setting provides an oracle which can produce an unlimited number of labeled
examples, one at a time. This idealized model may describe learning problems with on-
line example sources, including very large datasets which must be loaded piecemeal into
memory. By using new training examples each round, filtering boosters avoid maintaining
a distribution over a training set and so may use large datasets much more efficiently than
batch boosters.

This paper presents FilterBoost, an adaptive boosting-by-filtering algorithm. We show
it is applicable to both conditional probability estimation, where the learner predicts the
probability of each label given an example, and classification. In Section 2, we describe the
algorithm, after which we interpret it as a stepwise method for fitting an additive logistic
regression model for conditional probabilities. We then bound the number of rounds and
examples required to achieve any target error in (0, 1). Previous filtering boosters have
either worse bounds or require impractical assumptions in their analyses. We also show
that FilterBoost can use the confidence-rated predictions from weak hypotheses described
by Schapire and Singer (1999).

We extend the basic FilterBoost algorithm to several multiclass versions in Section 3.
We follow the work of Freund and Schapire (1997) and present FilterBoost.M2, an algorithm
analogous to their AdaBoost.M2. FilterBoost.OC is analogous to AdaBoost.OC (Schapire,
1997), using output codes to reduce a multiclass problem to multiple binary problems. We
also show that the generalization of this output coding idea presented by Allwein et al.
(2000) for batch learning extends readily to the filtering setting.

In Section 4, we give results from extensive experiments. For conditional probability
estimation, we show that FilterBoost often outperforms batch boosters, which prove less
robust to overfitting. For classification, we show that filtering boosters’ efficiency on large
datasets allows them to achieve higher accuracies faster than batch boosters in many cases.

1.1 Boosting

We begin with an explanation of traditional boosting in the batch setting.
Let X be the set of all examples and Y a discrete set of labels. For simplicity, assume

X is countable, and consider only binary labels Y = {−1,+1}. We assume there exists
an unknown target distribution D over labeled examples (x, y) ∈ X × Y from which both
training and test examples are generated. The goal in classification is to choose a hypothesis

3

FilterBoost: Regression and Classification on Large Datasets

h : X → Y which minimizes the classification error PrD[h(x) 6= y], where the subscript
indicates that the probability is with respect to (x, y) sampled randomly from D.

In the batch setting, a booster is given a fixed training set S and a weak learner which,
given any distribution Dt over training examples S, is guaranteed to return a weak hypoth-
esis ht : X → R such that the error εt ≡ PrDt [sign(ht(x)) 6= y] < 1/2. For T rounds t, the
booster builds a distribution Dt over S, runs the weak learner on S and Dt, and receives
ht. The booster usually then estimates εt using S and weights ht with αt = αt(εt). After T
rounds, the booster outputs a final hypothesis H which is a linear combination of the weak
hypotheses (e.g. H(x) =

∑
t αtht(x)). The sign of H(x) indicates the predicted label ŷ for

x.
Two key elements of boosting are constructing Dt over S and weighting weak hypotheses.

Dt is built such that misclassified examples receive higher weights than in Dt−1, eventually
forcing the weak learner to classify previously poorly classified examples correctly. Weak
hypotheses ht are generally weighted such that hypotheses with lower errors receive higher
weights.

1.2 Boosting-by-Filtering

We describe a general framework for boosting-by-filtering which includes most existing
algorithms as well as our algorithm Filterboost. The filtering setting assumes the learner
has access to an example oracle, allowing it to use entirely new examples sampled i.i.d.
from D on each round. However, while maintaining the distribution Dt is straightforward
in the batch setting, there is no fixed set S on which to define Dt in filtering. Instead, the
booster simulates examples drawn from Dt by drawing examples from D via the oracle and
reweighting them according to Dt. Filtering boosters generally accept each example (x, y)
from the oracle for training on round t with probability proportional to the example’s weight
Dt(x, y). The mechanism which accepts examples from the oracle with some probability is
called the filter.

Thus, on each round, a boosting-by-filtering algorithm draws a set of examples from
Dt via the filter, trains the weak learner on this set, and receives a weak hypothesis ht.
Though a batch booster would estimate εt using the fixed set S, filtering boosters may
use new examples from the filter. Like batch boosters, filtering boosters may weight ht

using αt = αt(εt), and they output a linear combination of h1, . . . , hT as a final hypothesis.
The filtering setting allows the learner to estimate the error of Ht to arbitrary precision
by sampling from D via the oracle, so filtering boosters do this to decide when they have
reached the target accuracy.

A key benefit of the filtering setting is that it can simplify the analysis of algorithms.
The direct access to the target distribution via the oracle, rather than indirect access via
a fixed dataset, allows analyses to directly consider the test error of the algorithm. Batch
algorithms are generally analyzed by considering the training error and the generalization
error separately.

Since boosting-by-filtering algorithms’ analyses directly bound the test error, they indi-
cate that the algorithms can achieve arbitrarily low test error as they run for more rounds (if
the weak learning assumption continues to hold). This may seem to be a great benefit when
compared with batch algorithms, which have generalization error bounds which grow with

4

FilterBoost: Regression and Classification on Large Datasets

the number of boosting rounds. However, both types of algorithms can achieve arbitrarily
low test error if they use enough training examples. The difference is that the number of
training examples must be decided a priori for batch boosters, while the number may be
chosen adaptively for filtering boosters.

Both filtering and batch boosters require time proportional to N · T , where N is the
number of training examples used, to compute the distributions over examples. For fil-
tering, each of T rounds requires taking O(T) time to compute the weight of each of the
approximately N/T examples used on that round. The main benefits from filtering, there-
fore, are cheaper storage requirements —even one example at a time if the weak learner is
an online algorithm— and the ability to adaptively choose the number of boosting rounds
(and therefore the number of training examples).

1.3 Related Work

There have been a number of boosting-by-filtering algorithms previously proposed. The
first polynomial-time booster, by Schapire (1990), was designed for filtering. Later filtering
boosters included two more efficient ones proposed by Freund (1992, 1995), but both are
non-adaptive, requiring a priori bounds on weak hypothesis error rates and combining weak
hypotheses via unweighted majority votes. MadaBoost (Domingo and Watanabe, 2000) is
competitive with AdaBoost empirically but theoretically requires weak hypotheses’ error
rates to be monotonically increasing, an assumption we found to be violated often in prac-
tice. Bshouty and Gavinsky (2002) proposed another boosting-by-filtering algorithm, but,
like Freund’s, their algorithm requires an a priori bound on weak hypothesis error rates.
AdaFlatfilt (Gavinsky, 2003) and GiniBoost (Hatano, 2006) do not have these limitations,
but the former has worse bounds than other adaptive algorithms while the latter explicitly
requires finite weak hypothesis spaces. We give a reference chart comparing these algorithms
with ours in Figure 2.

Much work on boosting-by-filtering is based upon the idea of smooth boosting (Bshouty
and Gavinsky, 2002; Gavinsky, 2003; Servedio, 2003; Hatano, 2006), in which boosting
algorithms ensure that weights over training examples do not increase at an exponential rate.
Intuitively, ignoring issues with normalizing weights, boosting algorithms which increase
example weights exponentially quickly can create distributions with a great deal of weight
on very few examples. The filter may then take a very long time to return an example,
even when the test error is still high. In fact, Domingo and Watanabe (2000) proved
that AdaBoost’s weighting scheme increases example weights too quickly to be used in the
filtering setting.

FilterBoost is based on a modification of AdaBoost by Collins et al. (2002) designed
to minimize logistic loss. Their batch algorithm has yet to be shown to achieve arbitrarily
low test error, but we use techniques inspired by MadaBoost to adapt the algorithm to the
filtering setting and prove generalization bounds.

We postpone our discussion of related work on multiclass boosting until Section 3.

2. The FilterBoost Algorithm

The FilterBoost algorithm, given in Figure 1, is modeled after the aforementioned algorithm
by Collins et al. (2002) and MadaBoost (Domingo and Watanabe, 2000). It is identical to

5

FilterBoost: Regression and Classification on Large Datasets

Define Ft(x) ≡
∑t−1

t′=1 αt′ht′(x)
Function Oracle() returns labeled example (x, y) from target distribution D(x, y)

Algorithm 1: FilterBoost

Input: ε: target error rate, δ: confidence parameter, τ : edge estimate parameter, WL: weak
learner which computes h : X −→ R

Output: H : X −→ Y : final combined hypothesis
for t = 1, 2, 3, . . . do1

δt ←− δ
3t(t+1)2

Call Filter(t, ε, δt) to get mt examples for training WL; get ht3

γ̂′t ←− GetEdge(t, ε, δt, τ)4

αt ←− 1
2 ln

(
1/2+γ̂′

t

1/2−γ̂′
t

)
5

Define Ht(x) = sign
(
Ft+1(x)

)
6

(The algorithm exits from the Filter() function.)7

Algorithm 2: GetEdge

Input: t: boosting round, ε: target error rate,, δt: confidence parameter, τ : relative error
allowed in edge estimates

Output: γ̂′t: corrected edge estimate
Use EGBStop to estimate γt ≡ 1

2 − E [Jsign(ht(x)) 6= yK] w.r.t. examples (x, y) drawn from1

Filter(t, ε, δt), within relative error τ with probability at least 1− δt; get estimate γ̂t.
return γ̂t/(1 + τ)2

Algorithm 3: Filter

Input: t: boosting round, ε: target error rate, δt: confidence parameter
Output: labeled example (x, y)
Define r = # calls to Filter() so far on round t1

δ′t ←− δt

r(r+1)2

for (i = 0; i < 2
ε ln(1

δ′
t
); i = i + 1) do3

(x, y)←− Oracle()4

qt(x, y)←− 1
1+eyFt(x)5

return (x, y) with probability qt(x, y)6

Exit FilterBoost and return Ht−17

Figure 1: The FilterBoost algorithm

the version of the algorithm presented in our initial paper (Bradley and Schapire, 2007),
with the exception that the GetEdge() function uses the EGBStop algorithm (Mnih et al.,
2008) instead of the Nonmonotonic Adaptive Sampling (NAS) algorithm (Watanabe, 2000;
Domingo et al., 2002); this change is discussed more later.

Given an example oracle, weak learner, and target error rate ε ∈ (0, 1), FilterBoost
iteratively constructs the combined hypothesis Ht(x) ≡

∑t−1
t′=1 αt′ht′(x) until it has error at

most ε. The algorithm also takes a confidence parameter δ ∈ (0, 1) which upper-bounds the
allowed probability of failure.

6

FilterBoost: Regression and Classification on Large Datasets

On round t, FilterBoost draws mt examples from the filter to train the weak learner,
which produces weak hypothesis ht. The size of mt must be large enough to ensure ht has
error εt < 1/2 with high probability (at least 1− δt), where εt ≡ E[Jsign(ht(x)) 6= yK]. (We
write JπK to denote an indicator function with value 0 if the statement π is false and 1 if π
is true.) This value mt may depend upon the weak learner or problem setting. The edge of
ht is γt = 1/2− εt, and this edge is estimated by the function GetEdge() and is used to set
ht’s weight αt.

Function GetEdge() uses the EGBStop algorithm (Mnih et al., 2008). EGBStop draws
an adaptively chosen number of examples from the filter and returns an estimate γ̂t of the
edge of ht within relative error τ of the true edge γt with high probability. The GetEdge()
function revises this estimate as γ̂′t = γ̂t/(1 + τ).

The Filter() function generates examples (x, y) from Dt by repeatedly drawing (x, y)
from the oracle, calculating the weight qt(x, y) ∝ Dt(x, y), and accepting (x, y) with prob-
ability qt(x, y). The algorithm exits from the Filter() function.

2.1 Analysis: Conditional Probability Estimation

We begin our analysis of FilterBoost by interpreting it as an additive model for logistic
regression, for this interpretation will later aid in the analysis for classification. Such models
take the form

log
Pr[y = 1|x]

Pr[y = −1|x]
=
∑

t

ft(x) = F (x), which implies Pr[y = 1|x] =
1

1 + e−F (x)

where, for FilterBoost, ft(x) = αtht(x). Dropping subscripts, we can write the expected
negative log likelihood of example (x, y) after round t as

π(Ft + αtht) = π(F + αh) = E
[
− ln

1
1 + e−y(F (x)+αh(x))

]
= E

[
ln
(
1 + e−y(F (x)+αh(x))

)]
.

Taking a similar approach to the analysis of Friedman et al. (2000), we show in the following
theorem that FilterBoost performs an approximate stepwise minimization of this negative
log likelihood. The proof is in the Appendix.

Theorem 1 Define the expected negative log likelihood π(F + αh) as above. Given F ,
FilterBoost chooses h to minimize a second-order Taylor expansion of π around h = 0.
Given this h, it then chooses α to minimize an upper bound of π.

The batch booster given by Collins et al. (2002) which FilterBoost is based upon is
guaranteed to converge to the minimum of this objective when working over a finite sample.
Note that FilterBoost uses weak learners which are simple classifiers to perform regression.
AdaBoost too may be interpreted as an additive logistic regression model of the form Pr[y =
1|x] = 1

1+e−2F (x) with E[exp(−yF (x))] as the optimization objective (Friedman et al., 2000).

2.2 Analysis: Classification

In this section, we interpret FilterBoost as a traditional boosting algorithm for classification
and prove bounds on its generalization error. We first give a theorem relating errt, the error

7

FilterBoost: Regression and Classification on Large Datasets

rate of Ht over the target distribution D, to pt, the probability with which the filter accepts
a random example generated by the oracle on round t.

Theorem 2 Let errt = PrD[Ht(x) 6= y], and let pt = ED[qt(x, y)]. Then errt ≤ 2pt.

Proof:

errt = PrD[Ht(x) 6= y] = PrD[yFt−1(x) ≤ 0]
= PrD[qt(x, y) ≥ 1/2] ≤ 2 · ED[qt(x, y)] (using Markov’s inequality)
= 2pt �

We next use the expected negative log likelihood π from Section 2.1 as an auxiliary
function to aid in bounding the required number of boosting rounds. Viewing π as a
function of the boosting round t, we can write πt = −

∑
(x,y) D(x, y) ln(1 − qt(x, y)). Our

goal is then to minimize πt, and the following lemma captures the learner’s progress in
terms of the decrease in πt on each round. This lemma assumes edge estimates returned
by GetEdge() are exact, i.e. γ̂′t = γt, which leads to a simpler bound on T in Theorem 4.
We then consider the error in edge estimates and give a revised bound in Lemma 6 and
Theorem 7. The proofs of Lemmas 3 and 6 are in the Appendix.

Lemma 3 Assume for all rounds t that the edge γt 6= 0 and γt is estimated exactly. Let
πt = −

∑
(x,y) D(x, y) ln(1− qt(x, y)). Then

πt − πt+1 ≥ pt

(
1− 2

√
1/4− γ2

t

)
.

Combining Theorem 2, which bounds the error of the current combined hypothesis in
terms of pt, with Lemma 3 gives the following upper bound on the required rounds T .

Theorem 4 Let γ = mint |γt|, and let ε be the target error. Given Lemma 3’s assumptions,
if FilterBoost runs for

T >
2 ln(2)

ε
(
1− 2

√
1/4− γ2

)
rounds, then errt < ε for some t, 1 ≤ t ≤ T . In particular, this is true for T > ln(2)

2εγ2 .

Proof. For all (x, y), since F1(x, y) = 0, then q1(x, y) = 1/2 and π1 = ln(2). Now, suppose
errt ≥ ε,∀t ∈ {1, ..., T}. Then, from Theorem 2, pt ≥ ε/2, so Lemma 3 gives

πt − πt+1 ≥
1
2
ε
(
1− 2

√
1/4− γ2

)
Unraveling this recursion as

∑T
t=1 (πt − πt+1) = π1 − πT+1 ≤ π1 gives

T ≤ 2 ln(2)

ε
(
1− 2

√
1/4− γ2

) .

8

FilterBoost: Regression and Classification on Large Datasets

So, errt ≥ ε,∀t ∈ {1, ..., T} is contradicted if T exceeds the theorem’s lower bound. The
simplified bound follows from the first bound via the inequality 1−

√
1− x ≤ x for x ∈ [0, 1].

�
Theorem 4 shows FilterBoost can reduce generalization error to any ε ∈ (0, 1), but we

have thus far overlooked the probabilities of failure introduced by three steps: training
the weak learner, deciding when to stop boosting, and estimating edges. We bound the
probability of each of these steps failing on round t with a confidence parameter δt = δ

3t(t+1)
so that a simple union bound ensures the probability of some step failing to be at most
FilterBoost’s confidence parameter δ. Finally, we revise Lemma 3 and Theorem 4 to account
for error in estimating edges.

Training the weak learner: The number mt of examples the weak learner trains on
must be large enough to ensure weak hypothesis ht has a non-zero edge. It should be set
according to the choice of weak learner and will depend upon the confidence parameter δt.

Deciding when to stop: To decide when to stop boosting (i.e. when errt ≤ ε), we
can use Theorem 2, which upper-bounds the error of the current combined hypothesis Ht

in terms of the probability pt that Filter() accepts a random example from the oracle. If
the filter rejects enough examples in a single call, we know pt is small, so Ht is accurate
enough. Theorem 5 formalizes this intuition.

Theorem 5 In a single call to Filter(t), if n examples have been rejected, where n ≥
2
ε ln(1/δ′t), then errt ≤ ε with probability at least 1− δ′t.

Proof. Suppose pt > ε/2. Then the probability that the filter rejects n sequential examples
is (1 − pt)n < (1 − ε/2)n. So, if (1 − ε/2)n ≤ δ′t, then pt ≤ ε/2 with probability at least
1− δ′t. From Theorem 2, we know pt ≤ ε/2 implies errt ≤ ε. The condition (1− ε/2)n ≤ δ′t
gives our bound on n to ensure errt ≤ ε with high probability. �

Theorem 5 provides a stopping condition which is checked on each call to Filter(). Each
check may fail with probability at most δ′t = δt

r(r+1) on the rth call to Filter() so that a
union bound ensures FilterBoost stops prematurely on round t with probability at most δt.
Theorem 5 uses a similar argument to that used for MadaBoost, giving similar stopping
criteria for both algorithms.

Estimating weak hypothesis edges: We estimate weak hypotheses’ edges γt using
the EGBStop algorithm by Mnih et al. (2008). The EGBStop algorithm is guaranteed,
with probability at least 1− δt, to compute an estimate of the mean of a bounded random
variable X within relative error τ of the truth using at most

C ·max
{

σ2

τ2µ2
,

R

τ |µ|

}(
log

1
δt

+ log log
R

τ |µ|

)
samples, where C is a constant, σ2 is the variance of X, µ is the mean of X, and R is the
range of X. In our case, this means that with probability at least 1 − δt, we can compute
an estimate γ̂t of the true edge γt within relative error τ ∈ (0, 1) using at most

C ·max
{

σ2

τ2γ2
t

,
1

τ |γt|

}(
log

1
δt

+ log log
1

τ |γt|

)
filtered samples, where C is a constant and σ2 is the variance of γt. As Mnih et al. state,
their bound is very close to optimal, for it is close to a lower bound on the number of

9

FilterBoost: Regression and Classification on Large Datasets

samples needed by an adaptive sampling algorithm of this form proven by Dagum et al.
(2000). Dagum et al. proved that, to estimate the mean of nonnegative, bounded X within
relative error τ , at least

C ′ ·max
{

σ2

τ2µ2
,

1
τµ

}
· log

2
δt

samples will be needed with probability at least 1−δt, where C ′ is a constant. The EGBStop
algorithm’s bound is worse by the presence of the range R and the log log term; in our case,
R = 1 (for edges), and the log log term is generally very small.

The original FilterBoost algorithm (Bradley and Schapire, 2007) used the Nonmono-
tonic Adaptive Sampling (NAS) algorithm (Watanabe, 2000; Domingo et al., 2002) instead
of EGBStop. To compute γ̂t, the NAS algorithm uses at most 2(1+2τ)2

(τγt)2
ln(1

τγtδt
) filtered

examples. This bound is, however, generally worse than the bound for EGBStop. (Note
that if the booster has an a priori lower bound on all γt, the number examples may be
chosen using a Hoeffding-style bound, as is done by Bshouty and Gavinsky (2002).)

FilterBoost conservatively revises the edge estimate by a factor of 1/(1 + τ) to help in
the following analysis.

A complete bound: With this guarantee on edge estimates from EGBStop, we can
rewrite Lemma 3 as follows:

Lemma 6 Assume for all t that γt 6= 0 and γt is estimated to within τ ∈ (0, 1) relative
error. Let πt = −

∑
(x,y) D(x, y) ln(1− qt(x, y)). Then

πt − πt+1 ≥ pt

(
1− 2

√
1/4− γ2

t

(
1− τ

1 + τ

)2
)

.

Using Lemma 6, the proof of which is in the Appendix, the following theorem modifies
Theorem 4 to account for error in edge estimates.

Theorem 7 Let γ = mint |γt|. Let ε be the target error. Given Lemma 6’s assumptions, if
FilterBoost runs for

T >
2 ln(2)

ε
(
1− 2

√
1/4− γ2(1−τ

1+τ)2
)

rounds, then errt < ε for some t, 1 ≤ t ≤ T .

When comparing FilterBoost with batch boosters, note that the FilterBoost bounds’
dependence on the weak hypothesis space complexity is hidden in mt, while for it is explicit
for batch algorithms.

An alternate bound for FilterBoost may be derived using techniques from Shalev-
Shwartz and Singer (2006). They use the framework of convex repeated games to define
a general method for bounding the performance of online and boosting algorithms. For
FilterBoost, their techniques, combined with Theorem 2, give a bound similar to that in
Theorem 4 but proportional to ε−2 instead of ε−1.

10

FilterBoost: Regression and Classification on Large Datasets

Rounds Need Assume Can use infinite
required a priori edges weak hypothesis

Setting (Big-Oh) bound γ decreasing spaces
FilterBoost filtering 1/ε No No Yes
MadaBoost filtering 1/ε No Yes Yes
Bshouty and filtering log(1/ε) Yes No Yes

Gavinsky (2002)
AdaFlatfilt filtering 1/ε2 No No Yes
GiniBoost filtering 1/ε No No No
AdaBoost batch log(1/ε) No No Yes

Figure 2: A comparison of FilterBoost with previous boosting algorithms. Note that all of
the filtering boosters may use boosting tandems to achieve O(log(1/ε)) rounds,
but this results in more complicated algorithms and final hypotheses.

2.3 Comparison with Previous Algorithms

The bounds from Theorems 4 and 7 show FilterBoost requires at most O(ε−1γ−2) boosting
rounds. MadaBoost (Domingo and Watanabe, 2000), which we test in our experiments, re-
sembles FilterBoost but uses truncated exponential weights qt(x, y) = min{1, exp(yFt−1(x))}
instead of the logistic weights qt(x, y) = (1 + exp(yFt(x)))−1 used by FilterBoost. The
algorithms’ analyses differ, with MadaBoost requiring the edges γt to be monotonically
decreasing, but both lead to similar bounds on the number of rounds T proportional to ε−1.

The non-adaptive filtering boosters of Freund (1992, 1995) and of Bshouty and Gavinsky
(2002) and the batch booster AdaBoost (Freund and Schapire, 1997) have smaller bounds
on T , proportional to log(ε−1). However, we can use boosting tandems, a technique used
by Freund (1992) and Gavinsky (2003), to create a filtering booster with T bounded by
O(log(ε−1)γ−2). Specifically, we can use FilterBoost to boost the accuracy of the weak
learner to some constant and, in turn, treat FilterBoost as a weak learner and use a boosting
algorithm from Freund (1992) to achieve any target error. This technique does not require
FilterBoost to make additional assumptions, and it turns FilterBoost into an adaptive
booster with a bound on T proportional to log(ε−1). Note, however, that boosting tandems
result in more complicated final hypotheses. To our knowledge, no adaptive boosting-
by-filtering algorithm (which does not require a priori bounds on weak hypothesis edges)
achieves a bound on T proportional to log(ε−1) without boosting tandems.

We compare FilterBoost with AdaBoost and recent boosting-by-filtering algorithms
in Figure 2. These include AdaFlatfilt (Gavinsky, 2003) and GiniBoost (Hatano, 2006).
As discussed in Section 1.3, FilterBoost avoids unrealistic assumptions made by previous
boosting-by-filtering algorithms, save for AdaFlatfilt , which has a worse bound on the
number of boosting rounds required. Note that all of these algorithms require a number of
rounds proportional to 1/γ2.

11

FilterBoost: Regression and Classification on Large Datasets

2.4 Confidence-Rated Predictions

Schapire and Singer (1999) show AdaBoost benefits from confidence-rated predictions,
where weak hypotheses return predictions whose magnitudes indicate confidence. These
values are chosen to greedily minimize AdaBoost’s exponential loss function over train-
ing data, and this aggressive weighting can result in faster learning. FilterBoost may use
confidence-rated predictions in an identical manner. In the proof of Lemma 3, the decrease
in the negative log likelihood πt of the data (relative to Ht and the target distribution D) is
lower-bounded by pt− pt

∑
(x,y) Dt(x, y)e−αtyht(x). Since pt is fixed, maximizing this bound

is equivalent to minimizing the exponential loss over Dt.
Schapire and Singer (1999) show that, for a fixed training set {(xi, yi)}, this bound is

optimized when

αtht(x) = 1
2 ln

(
W

sign(ht(x))
+ /W

sign(ht(x))
−

)
where W ŷ

y =
∑

i:sign(ht(xi))=ŷ∧yi=y Dt(xi, yi)

Schapire & Singer recommend smoothing these predictions by adding a small constant to
each W ŷ

y . We add 10−6 in our experiments with confidence-rated predictions.

2.5 Implementation Details

Vanilla FilterBoost accepts examples (x, y) from the oracle with probability qt(x, y), but
it may instead accept all examples and weight each with qt(x, y). This is analogous to
using importance weighting instead of importance sampling. Weighting instead of filtering
examples increases accuracy but also increases the size of the training set passed to the
weak learner. For estimating edges γt, however, weighting takes almost the same amount
of time as filtering. For efficiency, we recommend filtering when training the weak learner
but weighting when estimating edges.

In practice, it is best to modify FilterBoost’s GetEdge() function for efficiency. The
EGBStop algorithm used to estimate edges γt uses many examples, and using several orders
of magnitude fewer sacrifices little accuracy. The same is true for MadaBoost, which uses the
NAS algorithm but may use EGBStop instead. We recommend using Cn log(t+1) examples
to estimate γt, where Cn is a constant and the log factor scales the number approximately as
EGBStop would. In our experiments, we train weak learners with Cm log(t+1) examples as
well, for PAC sample complexity bounds generally scale proportional to log(1/δt) ∝ log(t).
In our experiments, we use Cn = Cm = 300. A more rigorous but less practical approach
would use the sample complexity bounds for the weak learners.

These modifications mean τ (error in edge estimates) and δ (confidence) have no effect
on our tests. If FilterBoost were run without the modifications, τ ∈ (0, 1) could be chosen by
hand or model selection. Intuitively, large τ makes the algorithm tend to choose αt poorly,
increasing the number of required boosting rounds. With very low τ , the GetEdge() function
requires many examples. We could choose τ to optimize the example bounds from Section
2.2. We performed a numerical analysis comparing, for varying minimum weak learner
edge γ = mint γt, a simplified, convex bound on the example complexity of FilterBoost for
constant τ versus the numerically computed optimal choice of τ = τ(γ). We found that, for
γ ∈ (.01, .49), setting τ = 1/5 leads to an example complexity bound at most 12% higher
than for the optimal τ , and we suggest using this τ in practice.

12

FilterBoost: Regression and Classification on Large Datasets

Problem Weak hypotheses predict Requirements for h

AdaBoost.M1 multiclass 1 of k labels error < 1/2 for k-class problem
AdaBoost.M2 multiclass confidence in each label pseudoloss < 1/2
AdaBoost.OC multiclass binary label error < 1/2 on binary relabeling
AdaBoost.MH multiclass, confidence in each label error < 1/2, for each y ∈ Y

multilabel
AdaBoost.MO multiclass confidence in each label error < 1/2,

for each y′ in relabeling Y ′

AdaBoost.MR multiclass, confidence in each label h scores correct labels
multilabel above incorrect, on avg.

Figure 3: A comparison of various methods for extending AdaBoost to multiclass and mul-
tilabel problems.

FilterBoost assumes that the oracle generates examples from a fixed distribution. To
simulate an oracle from a fixed dataset, one may randomly permute the data and use
examples in the new order. In practice, filtering boosters can achieve higher accuracy by
cycling through training sets again instead of stopping once examples are depleted; we call
this method “recycling” examples.

3. Multiclass and Multilabel Classification

While most boosting algorithms are proposed in terms of binary classification, almost all
may be extended to multiclass and multilabel classification in similar ways. We briefly
review some of the methods used for extending AdaBoost to multiclass and multilabel
problems before describing analogous extensions for FilterBoost. In the following, we let
k = |Y |, the number of classes or labels.

Figure 3 compares some multiclass and multilabel extensions to AdaBoost. AdaBoost.M1
and AdaBoost.M2 were proposed in the original AdaBoost paper (Freund and Schapire,
1997). AdaBoost.M1 makes the rather strong assumption that weak hypotheses can choose
the correct label out of k labels with probability > 1/2, i.e. significantly better than ran-
dom guessing. AdaBoost.M2 is more realistic, allowing the booster to make use of weak
hypotheses which do only slightly better than random guessing. Dietterich and Bakiri (1995)
proposed the use of using Error-Correcting Output Codes (ECOC) to reduce a multiclass
problem to a set of binary problems, and AdaBoost.OC (Schapire, 1997) combines this idea
with AdaBoost to create a simple algorithm for multiclass problems. AdaBoost.MH, Ada-
Boost.MO, and AdaBoost.MR were proposed by Schapire and Singer (1999). AdaBoost.MH
solves multilabel problems by reducing the problem of mapping X to subsets of Y to the
problem of mapping X×Y to binary labels, thereby minimizing Hamming loss. It may also
be applied to multiclass problems if the weak learner’s predictions are confidence-rated; in
this case, it outputs the label predicted with the highest confidence. AdaBoost.MO uses
ECOC to create a different reduction from multiclass to binary; it relabels examples with
binary labels and then calls AdaBoost.MH on the relabeled examples. AdaBoost.MR solves
multiclass and multilabel problems by trying to minimize a ranking loss which penalizes

13

FilterBoost: Regression and Classification on Large Datasets

examples for pairs of labels in which the higher-ranked label is not a true label while the
lower-ranked label is a true label. Allwein et al. (2000) gives a general method for reducing
multiclass problems to binary for margin-based classifiers such as boosters and Support
Vector Machines (SVMs) (Vapnik, 1995; Cortes and Vapnik, 1995). Their method general-
izes many other approaches by using a generalization of the coding matrix method used by
Dietterich and Bakiri (1995).

3.1 FilterBoost.M2

We first modify FilterBoost for multiclass problems following the example of AdaBoost.M2.
The resulting algorithm, FilterBoost.M2, is given in Figure 4. This algorithm uses a natural
extension to the multiclass case which allows the use of real-valued weak hypotheses; these
weak hypotheses may either model all classes at once or consider each separately as long as
they do better than random guessing with respect to a pseudoloss. Moreover, the algorithm
permits a simple proof via a reduction to FilterBoost, and it allows a simple proof for
FilterBoost.OC, described in the following section.

For FilterBoost.M2, we use weak hypotheses which output values in [−1, 1] for any
example-label pair (x, y), where higher values predicted by a weak hypothesis indicate
higher confidence that example x should have label y. (Outputing values in [−1, 1] rather
than R does not affect the generality of our results.) The final hypothesis combines the
outputs of weak hypotheses in a weighted sum, outputting the label which maximizes this
sum. We use notation parallel to that used by FilterBoost, but note that the variables are
defined in analogous but distinct ways; for example, pt is still the probability an example
from the oracle is accepted by the filter on round t, but it is defined differently here than
in FilterBoost.

While FilterBoost implicitly maintains a single weight qt(x, y) for each example, Filter-
Boost.M2 has a weight for each pair ((x, y), y′) where (x, y) is a labeled example and y′

is any label. This weight q′t((x, y), y′), defined in Figure 4, is close to 1 when the current
combined hypothesis Ht−1 strongly prefers an incorrect label y′ to the true label y, is close
to 0 when Ht−1 strongly prefers y to y′, and is 1/2 when Ht−1 has no preference.

The weak hypotheses’ error rates (and edges) are no longer defined in terms of binary
error but, rather, are defined using a pseudoloss:

plossqt
(ht, (x, y)) ≡ 1

2

1− ht(x, y) +
∑
y′ 6=y

qt((x, y), y′)ht(x, y′)

where qt((x, y), y′) is defined as in Figure 4. When ht predicts the correct label y with high
confidence and the incorrect labels y′ with low confidence, this pseudoloss is near 0; when
ht predicts y with much lower confidence than y′, it is near 1. The error is the expectation
of this pseudoloss with respect to samples drawn from the filter.

We first adapt Theorem 2 to FilterBoost.M2. The resulting Theorem 8 is similar to that
for FilterBoost but is worse by a factor of 1/(k − 1). We may slightly modify Theorem 5
(using the analogous FilterBoost.M2 variables) to get a similar stopping condition to that
for FilterBoost in Theorem 9.

Theorem 8 Let errt = PrD[Ht(x) 6= y], and let pt = ED[p′t(x, y)]. Then errt ≤ 2pt

k−1 .

14

FilterBoost: Regression and Classification on Large Datasets

Define q′t((x, y), y′) ≡ 1/(1 + exp(
∑t−1

t′=1
1
2αt′(ht′(x, y)− ht′(x, y′))))

Define p′t(x, y) ≡
∑

y′ 6=y q′t((x, y), y′)
Define qt((x, y), y′) ≡ q′t((x, y), y′)/p′t(x, y)
Function Oracle() returns labeled example (x, y) from target distribution D(x, y)

Algorithm 4: FilterBoost.M2
Input: ε: target error rate, δ: confidence parameter, τ : edge estimate parameter, WL: weak

learner which computes h : X × Y −→ [−1, 1] where |Y | = k
Output: H : X −→ Y : final combined hypothesis
for t = 1, 2, 3, . . . do1

δt ←− δ
3t(t+1)2

Call Filter(t, ε, δt) to get mt examples for training WL; get ht3

γ̂′t ←− GetEdge(t, ε, δt, τ)4

αt ←− 1
2 ln

(
1/2+γ̂′

t

1/2−γ̂′
t

)
5

Define Ht(x) = arg maxy∈Y

∑t
t′=1 αtht(x, y)6

(The algorithm exits from the Filter() function.)7

Algorithm 5: GetEdge

Input: t: boosting round, ε: target error rate,, δt: confidence parameter, τ : relative error
allowed in edge estimates

Output: γ̂′t: corrected pseudoedge estimate
Use EGBStop to estimate γt ≡ E

[
1
2

(
ht(x, y)−

∑
y′ 6=y qt((x, y), y′)ht(x, y′)

)]
w.r.t. examples1

(x, y) drawn from Filter(t, ε, δt), within relative error τ with probability at least 1− δt;
get estimate γ̂t.
return γ̂/(1 + τ)2

Algorithm 6: Filter

Input: t: boosting round, ε: target error rate, δt: confidence parameter
Output: labeled example (x, y)
Define r = # calls to Filter() so far on round t1

δ′t ←− δt

r(r+1)2

for (i = 0; i < 2
(k−1)ε ln(1

δ′
t
); i = i + 1) do3

(x, y)←− Oracle()4

return (x, y) with probability p′t(x, y)/(k − 1)5

Exit FilterBoost.M2 and return Ht−16

Figure 4: FilterBoost.M2: multiclass FilterBoost based on AdaBoost.M2

Proof:
errt = PrD [Ht(x) 6= y]

= PrD

[
∃y′ 6= y :

∑t
t′=1 αt′ht′(x, y) ≤

∑t
t′=1 αt′ht′(x, y′)

]
= PrD [∃y′ 6= y : q′t((x, y), y′) ≥ 1/2]
≤ PrD

[∑
y′ 6=y q′t((x, y), y′) ≥ 1/2

]
≤ 2ED

[∑
y′ 6=y q′t((x, y), y′)

]
= 2pt

k−1 �

15

FilterBoost: Regression and Classification on Large Datasets

Theorem 9 In a single call to Filter(t), if n examples have been rejected, where n ≥
2

(k−1)ε ln(1/δ′t), then errt ≤ ε with probability at least 1− δ′t.

Following the analysis of AdaBoost.M2 by Freund and Schapire (1997), we can de-
rive the following theorem which bounds the number of rounds of boosting required to
achieve a given target error. Note that this error is not a pseudoloss but classification error
PrD[Ht(x) 6= y]. The proof of Theorem 10, which uses a reduction of FilterBoost.M2 to
FilterBoost, is in the Appendix.

Theorem 10 Let γ = mint |γt|. Let ε be the target error. Given Lemma 6’s assumptions,
if FilterBoost.M2 runs

T >
2(k − 1) ln(2)

ε
(
1− 2

√
1/4− γ2(1−τ

1+τ)2
)

rounds, then errt < ε for some t, 1 ≤ t ≤ T .

We have now proven that FilterBoost.M2 can boost a weak learner, achieving arbitrarily
high accuracy as long as the weak learner can do better than random guessing on any
distribution it is given. This algorithm allows the use of weak learners which consider
all possible labels at once, rather than dividing them into k separate problems. While
this flexibility can permit more powerful weak learners, it is often simpler to implement
binary weak learners like those used by FilterBoost. We now introduce another extension
of FilterBoost which solves multiclass problems using binary weak learners.

3.2 FilterBoost.OC

We propose FilterBoost.OC (Output Codes), a multiclass extension to FilterBoost, which
is analogous to AdaBoost.OC, a multiclass extension to AdaBoost proposed by Schapire
(1997). It is based upon the idea of using Error-Correcting Output Codes to reduce multi-
class problems to binary, as proposed by Dietterich and Bakiri (1995), allowing the booster
to use binary weak learners. As Schapire (1997) shows empirically, though this reduction to
binary problems generally leads to less gain in accuracy per boosting round, the efficiency
of the method leads to more gain in accuracy per unit of time. Our algorithm and argu-
ments reducing FilterBoost.OC to a special case of FilterBoost.M2 are essentially identical
to those used by Schapire (1997), simply translated into the filtering setting.

The FilterBoost.OC algorithm is given in Figure 5. Each boosting round, it chooses a
coloring µt which maps labels in Y to binary labels in {−1, 1}. To train the weak learner, it
draws examples from the oracle, relabels them using this coloring, and passes these binary-
labeled examples to the weak learner. Intuitively, this means that the weak hypotheses are
chosen to divide examples into two sets, where each set corresponds to some subset of Y .
Therefore, a weak hypothesis ht : X −→ {−1, 1} defines a hypothesis h̃t : X −→ 2Y , where
2Y denotes all subsets of Y ; as defined in Figure 5, h̃t predicts y as a label of x if and
only if ht predicts the correct binary label µt(y) of x. Thus, we are effectively choosing a
weak hypothesis h̃t : X × Y −→ {−1, 1} (where h̃t(x, y) = −1 indicates that x does not
have label y and 1 indicates that x does have label y). This mapping to {−1, 1} instead of
[−1, 1] is a special case of the form for weak hypotheses used by FilterBoost.M2. Viewing

16

FilterBoost: Regression and Classification on Large Datasets

Define h̃t(x) ≡ {y ∈ Y : ht(x) = µt(y)}

Define q′t((x, y), y′) ≡ 1/
(
1 + exp

(∑t−1
t′=1 αt′

(
Jy ∈ h̃t(x)K− Jy′ ∈ h̃t(x)K

)))
Function Oracle() returns labeled example (x, y) from target distribution D(x, y)

Algorithm 7: FilterBoost.OC

Input: ε: target error rate, δ: confidence parameter, τ : edge estimate parameter, WL: weak
learner which computes h : X −→ {−1, 1}

Output: H : X −→ Y : final combined hypothesis
for t = 1, 2, 3, . . . do1

δt ←− δ
3t(t+1)2

Choose µt : Y −→ {−1, 1}3

Call FilterWL(t, ε, δt, µt) to get mt examples for WL; relabel using µt; train WL to4

get ht

ˆ̃γ
′
t ←− GetEdge(t, ε, δt, τ , µt)5

αt ←− 1
2 ln

(
1/2+ˆ̃γ

′
t

1/2−ˆ̃γ
′
t

)
6

Define Ht(x) = arg maxy∈Y

∑t
t′=1 αtJy ∈ h̃t(x)K7

(The algorithm exits from the Filter() function.)8

Algorithm 8: GetEdge

(Same as for FilterBoost.M2, but with ht(x, y) replaced with Jy ∈ h̃t(x)K.)1

Algorithm 9: FilterWL

(Same as for FilterBoost.M2, but with1

(a) r = # calls to Filter() and FilterWL() so far on round t and
(b) p′t(x, y) replaced by

∑
y′ 6=y q′t((x, y), y′)Jµt(y) 6= µt(y′)K, with q′t defined as above.)

Algorithm 10: Filter

(Same as for FilterBoost.M2, but with1

(a) r = # calls to Filter() and FilterWL() so far on round t and
(b) q′t defined as above.)

Figure 5: FilterBoost.OC: multiclass FilterBoost based on AdaBoost.OC

weak hypotheses ht (for .OC) as h̃t (for .M2), we can verify the weights q′t and edges γt

are equivalent to those used for FilterBoost.M2; in fact, FilterBoost.OC is a special case of
FilterBoost.M2 with a particular form for weak hypotheses. We may therefore apply the
same analysis.

However, FilterBoost.OC chooses examples for training the weak learner from a different
distribution than that from which it chooses examples to estimate the edges of the weak
hypotheses. In order to give an analog to Theorem 10 for FilterBoost.OC, we must first
relate the pseudoloss ε̃t = 1/2 − γ̃t of h̃t to the error rate εt = 1/2 − γt of ht. We do so in
the following lemma. This proof is omitted since it is identical to that for AdaBoost.OC
(Schapire, 1997) except that sums are over all possible examples instead of a fixed set of
training examples.

17

FilterBoost: Regression and Classification on Large Datasets

Lemma 11 Let γ̃t be the pseudoloss of h̃t with respect to the distribution Dt induced by
Filter() on round t (as defined in Figure 5). Let γt be the error of ht with respect to the
distribution induced by FilterWL() and the coloring µt. Then

γ̃t = γtUt where Ut = EDt

[
Jµt(y) 6= µt(y′)K

]
.

Combining this bound with Theorem 10 gives the following bound for FilterBoost.OC.

Theorem 12 Let γU = mint |γtUt|. Let ε be the target error. Given Lemma 6’s assump-
tions, if FilterBoost.OC runs

T >
2(k − 1) ln(2)

ε
(
1− 2

√
1/4− (γU)2(1−τ

1+τ)2
)

rounds, then errt < ε for some t, 1 ≤ t ≤ T .

As Schapire (1997) dicusses, colorings µt may easily be chosen so that Ut > 1/2 in
expectation, but choosing colorings optimally is a hard problem.

3.3 Allwein et al. (2000) in the Filtering Setting

Allwein et al. (2000) propose a general method for reducing multiclass problems to a set of
binary problems using a coding matrix M ∈ {−1, 0,+1}k×l. Each column in this matrix
represents a separate binary classification problem: for each column s ∈ {1, . . . , l}, we
relabel each training example (x, y) as (x,M(y, s)), ignoring examples with labels such
that M(y, s) = 0. We then train a binary learner on these examples to get a hypothesis
fs : X −→ R. They present two possible methods for combining the predictions of these
hypotheses on a new example x into a predicted label ŷ:

ŷ = arg max
y′

l∑
s=1

sign(M(y′, s)fx(x)) Hamming decoding

ŷ = arg min
y′

l∑
s=1

L(M(y′, s)fx(x)) loss-based decoding

where L is the loss the binary learner tries to minimize. (For FilterBoost, this is the logistic
loss.) We refer the reader to Allwein et al. (2000) for a more detailed discussion of this
approach, including how to choose the coding matrix M.

It is thus straightforward to use this approach with FilterBoost; we simply choose a
coding matrix and run FilterBoost on each of l subproblems. Moreover, the analysis of
training error from Allwein et al. (2000) in the batch setting works for the analysis of
the test error in the filtering setting. In particular, we can derive the following theorem by
replacing the average binary loss ε (in their notation) over a finite training set (averaged over
binary problems s ∈ {1, . . . , l}) with the expected binary loss ε over the target distribution
(again averaged over binary problems). Note that the loss for binary problem s ignores
examples (x, y) such that M(y, s) = 0, so ε ≡ ED[1l

∑l
s=1 L(M(y, s)fs(x))JM(y, s) 6= 0K].

18

FilterBoost: Regression and Classification on Large Datasets

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180

Boosting rounds 

Test Error ≤ 2pt 

Edge 

pt 

Test Error 

Figure 6: A sample run of FilterBoost: noisy majority vote data, WL = decision stumps,
50,000 training exs.

Theorem 13 (Analogous to Theorem 1 and Corollary 2 from Allwein et al. (2000).) Let
l, ε, L, M be defined as above. Let ρ = mini6=j{l −M(i, ·) ·M(j, ·)}. Then the test error
using Hamming-based decoding is at most

2lε

ρL(0)
,

and the test error using loss-based decoding is at most

lε

ρL(0)
.

4. Experiments

We conducted an extensive set of experiments exploring the performance of FilterBoost
and comparing it against other filtering and batch boosters. Before giving these results,
we present a single run of FilterBoost in Figure 6 to illustrate the algorithm’s important
properties. With each round, FilterBoost’s test error decreases; note that the bound on
the test error using pt is quite loose. The weak hypotheses’ edges tend to decrease slowly
on average but do not decrease monotonically. The probability pt with which the filter
accepts examples decreases with each round, so each round uses more examples and takes
longer. Batch boosters, on the other hand, take the same amount of time during each round
of boosting, but they take significantly longer for larger datasets. As we will demonstrate,
batch boosters are more efficient on small datasets, but as the dataset size increases, filtering
boosters become much more efficient and, for many problems, are able to achieve better
test performance. FilterBoost particularly excels at conditional probability estimation, and
it is competitive with classification.

19

FilterBoost: Regression and Classification on Large Datasets

4.1 Experimental Setup

We run FilterBoost using the techniques detailed in Section 2.5. We test FilterBoost with
and without confidence-rated predictions (labeled “(C-R)” in our results).

We compare FilterBoost against the filtering booster MadaBoost (Domingo and Wata-
nabe, 2000), which does not require an a priori bound on weak hypotheses’ edges and has
similar bounds without the complication of boosting tandems. We implement MadaBoost
with the same modifications as FilterBoost but did not test it with confidence-rated predic-
tions. (It is not clear how to do so since the analysis of MadaBoost assumes binary weak
hypotheses.)

We test FilterBoost against two batch boosters: the well-studied and historically suc-
cessful AdaBoost (Freund and Schapire, 1997) and the previously mentioned algorithm from
Collins et al. (2002) which is essentially a batch version of FilterBoost (labeled “AdaBoost-
LOG”). We test both with and without confidence-rated predictions as well as with and
without resampling (labeled “(resamp)”). In resampling, the booster trains weak learners
on small sets of examples sampled from the distribution Dt over the training set S rather
than on the entire set S, and this technique often increases efficiency with little effect on
accuracy. Our batch boosters use sets of size Cm log(t + 1) for training, like the filtering
boosters, but use all of S to estimate edges γt since this can be done efficiently. We test
the batch boosters using confidence-rated predictions and resampling in order to compare
FilterBoost with batch algorithms optimized for the efficiency which boosting-by-filtering
claims as its goal.

We test each booster using decision stumps and decision trees as weak learners to discern
the effects of simple and complicated weak hypotheses. The decision stumps minimize
training error, and the decision trees greedily maximize information gain and are pruned
using 1/3 of the data. Both weak learners aim to minimize exponential loss when outputing
confidence-rated predictions.

We use four datasets, described in the Appendix. Briefly,we use two synthetic sets:
Majority (majority vote) and Twonorm (Breiman, 1998), and two real sets from the UCI
Machine Learning Repository (Newman et al., 1998): Adult (census data; from Ron Kohavi)
and Covertype (forestry data with 7 classes merged to 2; Copyr. Jock A. Blackard &
Colorado State U.). We average over 10 runs, using new examples for synthetic data (with
50,000 test examples except where stated) and 10-fold cross validation for real data.

4.2 Running Time

Figure 7 compares the boosters’ runtimes. As expected, filtering boosters run slower per
round than batch boosters on small datasets but much faster on large ones. On small
datasets, filtering boosters end up recomputing the weight of each example many times
(when recycling examples). In addition, the probability the filter accepts an example quickly
shrinks when the booster has seen that example many times. On larger datasets, filtering
boosters become much more efficient; this holds true even when the datasets are small
enough to fit in main memory. MadaBoost and FilterBoost have asymptotically identical
running times, with MadaBoost being slightly faster by a constant due to how weights are
computed.

20

FilterBoost: Regression and Classification on Large Datasets

Figure 7: Running times: Ada/Filter/MadaBoost. Majority; WL = stumps.

4.3 Conditional Probability Estimation

In Section 2.1, we discussed the interpretation of FilterBoost and AdaBoost as stepwise
algorithms for conditional probability estimation. We test both algorithms and the variants
discussed above on all four datasets. We do not test MadaBoost, as it is not clear how to
use it to estimate conditional probabilities. We use log loss and root mean squared error
(RMSE) to measure learning, where the log loss on examples {(xi, yi)} is

∑
i− ln(P̂r[yi|xi])

and the RMSE is (
∑

i(Jyi = +1K − P̂r[+1|xi])2)1/2. In each plot, we compare FilterBoost
with the best of AdaBoost and AdaBoost-LOG: AdaBoost was best with decision stumps
and AdaBoost-LOG with decisions trees.

Figures 8, 9, and 10 give the results on Adult, Majority, and Twonorm, respectively.
These results indicate that both FilterBoost variants are competitive with batch algo-
rithms when boosting decision stumps: FilterBoost does a bit better on Adult, similarly
on Majority, and a bit worse on Twonorm. With decision trees, vanilla FilterBoost seems
to do strictly better on all of the datasets. Though FilterBoost(C-R) does better than
AdaBoost(C-R), all algorithms except for FilterBoost seem to overfit. For comparison,
batch logistic regression via gradient descent achieves RMSE 0.3489 and log (base e) loss
.4259 on Majority; FilterBoost with decision stumps, interpretable as a stepwise method
for logistic regression, seems to be approaching these asymptotically.

The Covertype dataset is an exception to our results and highlights a danger in filtering
and in resampling for batch learning: the complicated structure of some datasets seems to
require a complicated weak learner and to require that the weak learner train on the entire
dataset. With decision stumps, the filtering boosters are competitive, but decision trees
give better results than decision stumps. Only the non-resampling batch boosters achieve
high accuracies with decision trees. The first decision tree trained on the entire training set
achieves losses which seem to be unreachable with decision stumps and with boosters which
train on small subsets of the dataset. unachievable by any of the filtering or resampling
batch boosters when using To compete with non-resampling batch boosters, both filtering
boosters and resampling batch boosters must use Cm on the order of 105, by which point
they become very inefficient.

21

FilterBoost: Regression and Classification on Large Datasets

Decision stumps (FilterBoost vs. AdaBoost)

5 10 15 20

0.35

0.4

0.45

0.5

time (sec)

lo
g

(b
as

e
e)

 lo
ss

5 10 15 20

0.32

0.34

0.36

0.38

0.4

time (sec)
R

M
S

E
2 4 6 8 10 12 14 16

time (sec)

AdaBoost(resamp)

AdaBoost(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Decision trees (FilterBoost vs. AdaBoost-LOG)

5 10 15 20 25

0.35

0.4

0.45

0.5

0.55

time (sec)

lo
g

(b
as

e
e)

 lo
ss

5 10 15 20 25
0.32

0.34

0.36

0.38

0.4

0.42

0.44

time (sec)

R
M

S
E

4 6 8 10 12 14

time (sec)

AdaBoost−LOG(resamp)

AdaBoost−LOG(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Figure 8: Conditional Probability Estimation on Adult. 40,698 training exs.

Decision stumps (FilterBoost vs. AdaBoost)

10 20 30 40 50

0.45

0.5

0.55

0.6

0.65

0.7

time (sec)

lo
g

(b
as

e
e)

 lo
ss

10 20 30 40 50
0.35

0.4

0.45

0.5

time (sec)

R
M

S
E

2 4 6 8 10 12 14 16

time (sec)

AdaBoost(resamp)

AdaBoost(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Decision trees (FilterBoost vs. AdaBoost-LOG)

20 40 60 80 100

0.6

0.8

1

1.2

1.4

time (sec)

lo
g

(b
as

e
e)

 lo
ss

20 40 60 80 100

0.45

0.5

0.55

0.6

time (sec)

R
M

S
E

4 6 8 10 12 14

time (sec)

AdaBoost−LOG(resamp)

AdaBoost−LOG(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Figure 9: Conditional Probability Estimation on Majority. 10,000 training exs.

22

FilterBoost: Regression and Classification on Large Datasets

Decision stumps (FilterBoost vs. AdaBoost)

5 10 15
0.4

0.5

0.6

0.7

time (sec)

lo
g

(b
as

e
e)

 lo
ss

5 10 15
0.35

0.4

0.45

0.5

time (sec)
R

M
S

E
2 4 6 8 10 12 14 16

time (sec)

AdaBoost(resamp)

AdaBoost(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Decision trees (FilterBoost vs. AdaBoost-LOG)

20 40 60 80

0.6

0.8

1

1.2

1.4

time (sec)

lo
g

(b
as

e
e)

 lo
ss

20 40 60 80

0.4

0.45

0.5

time (sec)

R
M

S
E

4 6 8 10 12 14

time (sec)

AdaBoost−LOG(resamp)

AdaBoost−LOG(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Figure 10: Conditional Probability Estimation on Twonorm. 10,000 training exs.

Decision stumps (FilterBoost vs. AdaBoost)

200 400 600
0.5

0.55

0.6

0.65

time (sec)

lo
g

(b
as

e
e)

 lo
ss

200 400 600
0.4

0.42

0.44

0.46

0.48

time (sec)

R
M

S
E

0 5 10 15 20 25

time (sec)

AdaBoost(resamp)

AdaBoost

FilterBoost

Decision trees (FilterBoost vs. AdaBoost-LOG)

50 100 150

0.3

0.4

0.5

0.6

time (sec)

lo
g

(b
as

e
e)

 lo
ss

50 100 150

0.3

0.35

0.4

0.45

time (sec)

R
M

S
E

5 10 15 20 25

time (sec)

AdaBoost−LOG(resamp)

AdaBoost−LOG

FilterBoost

Figure 11: Conditional Probability Estimation on Covertype. 522,909 training exs.

23

FilterBoost: Regression and Classification on Large Datasets

Adult. 40,698 training exs. Majority. 500,000 training exs.
Decision stumps Decision trees Decision stumps Decision trees

5 10 15

0.76

0.78

0.8

0.82

0.84

0.86

time (sec)

te
st

 a
cc

ur
ac

y

5 10 15 20 25

0.75

0.8

0.85

time (sec)

te
st

 a
cc

ur
ac

y

10 20 30 40 50

0.6

0.7

0.8

0.9

time (sec)

te
st

 a
cc

ur
ac

y

20 40 60 80
0.55

0.6

0.65

0.7

0.75

time (sec)

te
st

 a
cc

ur
ac

y

Twonorm. 500,000 training exs. Covertype. 522,909 training exs.
Decision stumps Decision trees Decision stumps Decision trees

20 40 60 80 100

0.6

0.65

0.7

0.75

0.8

time (sec)

te
st

 a
cc

ur
ac

y

20 40 60 80 100 120 140

0.6

0.65

0.7

0.75

0.8

time (sec)

te
st

 a
cc

ur
ac

y

10 20 30

0.65

0.7

0.75

time (sec)

te
st

 a
cc

ur
ac

y

200 400 600 800 1000

0.7

0.75

0.8

time (sec)

te
st

 a
cc

ur
ac

y

4 6 8 10 12 14

time (sec)

FilterBoost
FilterBoost(C−R)
MadaBoost

Figure 12: Classification: filtering boosters only.

4.4 Classification

Figure 12 shows that vanilla FilterBoost and MadaBoost perform similarly in classification.
Confidence-rated predictions allow FilterBoost to outperform MadaBoost when using deci-
sion stumps (on Adult and Covertype) but sometimes cause FilterBoost to perform poorly
with decision trees (on Twonorm and Covertype).

Figure 13 compares FilterBoost with AdaBoost for each weak learner. (AdaBoost out-
performed AdaBoost-LOG for classification.) FilterBoost is competitive with AdaBoost,
doing better on Adult, about the same on the small Majority dataset, and a bit worse
on Twonorm. The large Majority dataset shows where FilterBoost performs best: with
decision stumps, all boosters achieve higher accuracies with the larger dataset, on which
filtering algorithms are much more efficient. Majority is represented well as a linear com-
bination of decision stumps, so the boosters all learn more slowly when using the overly
complicated decision trees. However, this problem generally affects filtering boosters less
than most batch variants, especially on larger datasets.

Figure 14 compares FilterBoost with AdaBoost on Covertype. As for conditional proba-
bility estimation, FilterBoost performs better when using decision stumps, but with decision
trees, AdaBoost without resampling performs much better than both FilterBoost and Ada-
Boost with resampling.

24

FilterBoost: Regression and Classification on Large Datasets

Adult. 40,698 training exs. Majority. 10,000 training exs.
Decision stumps Decision trees Decision stumps Decision trees

5 10 15 20

0.75

0.8

0.85

time (sec)

te
st

 a
cc

ur
ac

y

5 10 15 20 25

0.76

0.78

0.8

0.82

0.84

time (sec)

te
st

 a
cc

ur
ac

y

10 20 30 40 50

0.6

0.7

0.8

time (sec)

te
st

 a
cc

ur
ac

y

20 40 60 80 100

0.55

0.6

0.65

0.7

time (sec)

te
st

 a
cc

ur
ac

y

Twonorm. 10,000 training exs. Majority. 500,000 training exs.
Decision stumps Decision trees Decision stumps Decision trees

5 10 15

0.6

0.65

0.7

0.75

0.8

time (sec)

te
st

 a
cc

ur
ac

y

20 40 60 80

0.6

0.65

0.7

0.75

0.8

time (sec)

te
st

 a
cc

ur
ac

y

100 200 300 400 500

0.6

0.7

0.8

0.9

time (sec)

te
st

 a
cc

ur
ac

y
500 1000 1500

0.55

0.6

0.65

0.7

0.75

time (sec)

te
st

 a
cc

ur
ac

y
4 6 8 10 12 14

time (sec)

AdaBoost(resamp)

AdaBoost(resamp,C−R)

FilterBoost

FilterBoost(C−R)

Figure 13: Classification: FilterBoost vs. AdaBoost and AdaBoost-LOG on Adult, Major-
ity, and Twonorm.

Covertype. 522,909 training exs.
Decision stumps Decision trees

200 400 600 800 1000

0.65

0.7

0.75

time (sec)

te
st

 a
cc

ur
ac

y

1000 2000 3000 4000
0.7

0.75

0.8

0.85

0.9

0.95

time (sec)

te
st

 a
cc

ur
ac

y

5 10 15 20 25

time (sec)

AdaBoost(resamp)

AdaBoost

FilterBoost

Figure 14: Classification: FilterBoost vs. AdaBoost and AdaBoost-LOG on Covertype.

25

FilterBoost: Regression and Classification on Large Datasets

5. Concluding Remarks

We have proposed a novel boosting-by-filtering algorithm and shown its applicability to
classification and conditional probability estimation. Our experiments prove FilterBoost is
competitive with existing batch and filtering boosters in both applications. FilterBoost can
often learn faster than batch boosters by making efficient use of large datasets, and it tends
to be more resilient to overfitting, especially in conditional probability estimation.

We suggest several open questions. Bshouty and Gavinsky (2002) develop their filtering
booster in terms of smooth boosting, which implies robustness to certain types of noise,
and it would be interesting to interpret FilterBoost as a smooth booster to justify its
empirically shown robustness. Also, FilterBoost and MadaBoost’s bounds on the required
number of boosting rounds are exponentially larger in 1/ε than those for batch AdaBoost
and the filtering boosters of Freund (1995) and Bshouty and Gavinsky (2002). FilterBoost
is empirically competitive with AdaBoost, though, so it would be interesting to prove either
a tighter upper bound or a lower bound on T for FilterBoost. Finally, FilterBoost is based
upon its batch equivalent, the algorithm proposed by Collins et al. (2002). While FilterBoost
is provably a boosting algorithm in the filtering setting, it is not yet known if Collins et
al.’s algorithm is a boosting algorithm in the batch setting.

Appendix A: Proof of Theorem 1

Let π(F + αh) = E[ln(1 + e−y(F (x)+αh(x)))]. Given the previous estimate F (x), we first fix
α and choose h(x) to minimize a second-order expansion of π(F + αh) around h(x) = 0.

π(F + αh) = E

[
ln(1 + e−yF (x))− yαh(x)

1 + eyF (x)
+

1
2

y2α2h(x)2eyF (x)

(1 + eyF (x))2

]

= E

[
ln(1 + e−yF (x))− yαh(x)

1 + eyF (x)
+

1
2

α2eyF (x)

(1 + eyF (x))2

]

For α > 0, minimizing this approximation of π(F +αh) with respect to h(x) is equivalent to
maximizing the weighted expectation Eq[yh(x)] ≡ E[q(x, y)yh(x)] where q(x, y) = 1

1+eyF (x) .
This criterion is optimized for f(x) = sign(Eq[y|x]).

Now, given h(x), FilterBoost chooses α to minimize the upper bound

π(F + αh) ≤ E[e−y(F (x)+αh(x))].

This is the same optimization objective used by AdaBoost and is minimized when α =
1
2 log(1/2+γ

1/2−γ) where γ is the edge of h(x); this is exactly the α used by FilterBoost. �

Appendix B: Proof of Lemma 3

πt − πt+1 =
∑
(x,y)

D(x, y) ln
(1− qt+1(x, y)

1− qt(x, y)

)
(1)

26

FilterBoost: Regression and Classification on Large Datasets

Since qt(x, y) = 1
1+eyFt(x) , Ft(x) =

∑t−1
t′=1 αt′ht′(x),

eyFt(x) =
1

qt(x, y)
− 1 and (2)

qt+1(x, y) =
1

1 + eyFt(x)+αtyht(x)
(3)

Defining vt(x, y) = αtyht(x), combining (2) and (3) gives

qt+1(x, y) =
1

1 + (1
qt(x,y) − 1)evt(x,y)

=
qt(x, y)

qt(x, y) + (1− qt(x, y))evt(x,y)
(4)

Substituting (4) into (1), and using ln(1 + z) ≤ z, gives

πt − πt+1 = −
∑

(x,y) D(x, y) ln(qt(x, y)e−vt(x,y) + 1− qt(x, y))
≥ −

∑
(x,y) D(x, y)(−qt(x, y) + qt(x, y)e−vt(x,y))

=
∑

(x,y) D(x, y)qt(x, y)−
∑

(x,y) D(x, y)qt(x, y)e−vt(x,y)

Let Dt(x, y) = D(x,y)qt(x,y)
pt

. Then we can write

πt − πt+1 ≥ pt − pt

∑
(x,y)

Dt(x, y)e−αtyht(x) (5)

Using αt = 1
2 ln(1/2+γt

1/2−γt
) and εt ≡ PrDt [sign(ht(x)) 6= y] lets us write

∑
(x,y)

Dt(x, y)e−αtyht(x) = e−αt(1− εt) + eαtεt = 2

√
1
4
− γ2

t

Substituting this factor into (5) completes the proof. �

Appendix C: Proof of Lemma 6

The proof is identical to Lemma 1 up to (5). Now, though, αt = 1
2 ln(1/2+γ̂′t

1/2−γ̂′t
). Using

Pr[|γ̂t− γt| ≤ τγt] > 1− δt and γ̂′t = γ̂t

1+τ , we know γt ≥ γ̂t

1+τ with probability at least 1− δt,
which in turn implies γ̂′t ≤ γt. So we may rewrite and bound the sum in (5) as:∑

(x,y)

Dt(x, y)e−αtyht(x) = e−αt(1− εt) + eαtεt

=

(
1
2 − γ̂′t
1
2 + γ̂′t

)1/2(
1
2

+ γt

)
+

(
1
2 + γ̂′t
1
2 − γ̂′t

)1/2(
1
2
− γt

)

≤

(
1
2 − γ̂′t
1
2 + γ̂′t

)1/2(
1
2

+ γ̂′t

)
+

(
1
2 + γ̂′t
1
2 − γ̂′t

)1/2(
1
2
− γ̂′t

)
= 2

√
1/4− γ̂′2t

27

FilterBoost: Regression and Classification on Large Datasets

Substituting in γ̂′t = γ̂t

1+τ and using γ̂t ≥ γt(1− τ) gives

∑
(x,y) Dt(x, y)e−αtyht(x) ≤ 2

√
1/4− (γ̂t

1+τ)2

≤ 2
√

1/4− γ2
t (1−τ

1+τ)2

Substituting into (5) gives the required bound. �

Appendix D: Proof of Theorem 10

In this proof, we closely follow the methodology and notation of Freund and Schapire (1997).
Note, however, that we use labels {−1, 1} instead of {0, 1} and weak hypothesis predictions
in [−1, 1] instead of [0, 1], respectively. We reduce FilterBoost.M2 to FilterBoost and invoke
Theorem 7. FilterBoost variables are denoted with tildes. For each FilterBoost.M2 training
example (x, y), we define k − 1 training examples for FilterBoost: x̃(x,y),y′ ≡ ((x, y), y′) for
each incorrect label y′ 6= y; note that ((x, y), y′) is an unlabeled example, and its label is
ỹ = −1. (In our notation, we omit the label -1 since all labels given to FilterBoost are -1.)
FilterBoost’s target distribution is D̃((x, y), y′) = D(x, y)/(k − 1). We give FilterBoost a
weak hypothesis h̃t defined using the weak hypothesis ht chosen by FilterBoost.M2:

h̃t((x, y), y′) =
1
2
(
−ht(x, y) + ht(x, y′)

)
.

We estimate edges in FilterBoost not by the normal GetEdge() function but, rather, by
using all of the examples x̃(x,y),y′ corresponding to examples (x, y) used by FilterBoost.M2
to estimate edges. We review existing notation and define new notation for FilterBoost.M2
which helps us relate it to FilterBoost:

q′t((x, y), y′) = weight on example (x, y), label y′ (6)

p′t(x, y) =
∑
y′ 6=y

q′t((x, y), y′) = probability filter accepts example (x, y) (7)

pt =
∑
(x,y)

D(x, y)p′t(x, y) = 1/(E[# examples filter uses in 1 call]) (8)

Dt(x, y) =
D(x, y)p′t(x, y)

pt
= distribution induced by filter on round t (9)

Plugging in the definition of h̃t and ỹ = −1 into q̃t, we can see

q′t((x, y), y′) = q̃t((x, y), y′). (10)

Note this implies pt = (k − 1)p̃t. We can now verify that γt = γ̃t, which will imply that
αt = α̃t. To see γt = γ̃t, consider the errors εt = 1/2− γt and ε̃t = 1/2− γ̃t:

ε̃t = ED̃t

[
1− ỹh̃t((x, y), y′)

2

]
(by definition of error for FilterBoost)

=
1
2
ED̃t

[
1 + h̃t((x, y), y′)

]
(using ỹ = −1)

28

FilterBoost: Regression and Classification on Large Datasets

=
1
2
ED̃t

[
1− ht(x, y) + ht(x, y′)

]
(by definition of h̃t)

=
1
2

∑
(x,y)

D(x, y)
∑
y′ 6=y

1
k − 1

q̃t((x, y), y′)
p̃t

[
1− ht(x, y) + ht(x, y′)

]
(definition of D̃t)

=
1
2

∑
(x,y)

D(x, y)
∑
y′ 6=y

q′t((x, y), y′)
pt

[
1− ht(x, y) + ht(x, y′)

]
(by Eq. (10))

=
1
2

∑
(x,y)

D(x, y)p′t(x, y)
pt

1− ht(x, y) +
∑
y′ 6=y

qt((x, y), y′)ht(x, y′)

 (by Eq. (7))

= EDt

1
2

1− ht(x, y) +
∑
y′ 6=y

qt((x, y), y′)ht(x, y′)

 (by Eq. (9))

= εt (by definition of error for FilterBoost.M2)

This above equality shows that the estimates of weak hypothesis error rates are the same
in expectation for the two algorithms; an analogous argument shows that the empirical
estimates are identical since we use the same examples (by how we constructed this reduc-
tion). We have thus shown that our instantiation of FilterBoost produces the same results
as FilterBoost.M2 when run via this reduction. The rest of this proof is essentially identical
to that in Freund and Schapire (1997), but we reproduce it here in our notation. Note that
their proof is with respect to training error on a fixed training set, while ours is with respect
to the test error.

Suppose, for FilterBoost.M2, that Ht(x) 6= y for some (x, y). Then

t∑
t′=1

αtht(x, y) ≤
t∑

t′=1

αtht(x,Ht(x)),

which implies

t∑
t′=1

αth̃t((x, y),Ht(x)) =
1
2

t∑
t′=1

αt(−ht(x, y) + ht(x,Ht(x))) ≥ 1
2

t∑
t′=1

αt,

so H̃t((x, y),Ht(x)) = 1 by the definition of H̃t. This implies

Pr
D

[Ht(x) 6= y] ≤ Pr
D

[
∃y′ 6= y : H̃t((x, y), y′) = 1

]
.

Using ỹ = −1 for all FilterBoost examples and the definition of D̃, we get

Pr
D

[
∃y′ 6= y : H̃t((x, y), y′) = 1

]
≤ (k − 1) Pr

D̃

[
H̃t((x, y), y′) = 1

]
,

where the term on the right is (k − 1) times the error rate of FilterBoost. We can combine
this bound with Theorem 7 to complete the proof. �

29

FilterBoost: Regression and Classification on Large Datasets

Appendix E: Datasets

Majority is generated by a majority vote rule among 40 of 100 binary attributes, with labels
corrupted with 10% probability. Twonorm is a noisy synthetic dataset with 20 real-valued
attributes from Breiman (1998). Adult is from the UCI Machine Learning Repository
(Newman et al., 1998), donated by Ron Kohavi. Adult consists of 14-attribute census data,
with labels indicating income level, and eliminating examples with missing attribute values
left 45222 examples. Covertype (copyrighted by Jock A. Blackard and Colorado State U.)
is also from the UCI Machine Learning Repository. It contains 54-attribute forestry data,
where examples are locations and labels indicate the type of tree cover. The original dataset
has 7 classes, but we combined the 6 smallest to make the dataset binary, leaving the largest
(49% of the examples) alone.

References

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying
approach for margin classifiers. Journal of Machine Learning Research, 1:113–141, 2000.

J. K. Bradley and R. E. Schapire. Filterboost: Regression and classification on large
datasets. In Advances in Neural Information Processing Systems 20, 2007.

L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801–849, 1998.

N. H. Bshouty and D. Gavinsky. On boosting with polynomially bounded distributions.
Journal of Machine Learning Research, 3:483–506, 2002.

M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, adaboost and bregman
distances. Machine Learning, 48:253–285, 2002.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for monte carlo estimation.
SIAM Journal on Computing, 29:1484–1496, 2000.

T. G. Dietterich and G. Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

C. Domingo and O. Watanabe. Madaboost: a modification of adaboost. In 13th Annual
Conference on Computational Learning Theory, pages 180–189, 2000.

C. Domingo, R. Galvadà, and O. Watanabe. Adaptive sampling methods for scaling up
knowledge discovery algorithms. Data Mining and Knowledge Discovery, 6:131–152, 2002.

Y. Freund. An improved boosting algorithm and its implications on learning complexity.
In 5th Annual Conference on Computational Learning Theory, pages 391–398, 1992.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation,
121:256–285, 1995.

30

FilterBoost: Regression and Classification on Large Datasets

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55:119–139, 1997.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view
of boosting. The Annals of Statistics, 28:337–407, 2000.

D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning.
Journal of Machine Learning Research, 4:101–117, 2003.

K. Hatano. Smooth boosting using an information-based criterion. In 17th International
Conference on Algorithmic Learning Theory, pages 304–319, 2006.

V. Mnih, C. Szepesvari, and J.-Y. Audibert. Empirical bernstein stopping. In 25th Inter-
national Conference on Machine Learning, 2008.

D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI Repository of machine learning
databases [http://www.ics.uci.edu/∼mlearn/MLRepository.html]. U. of California, Dept.
of Information and Computer Science, Irvine, CA, 1998.

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

R. E. Schapire. Using output codes to boost multiclass learning problems. In Machine
Learning: Proceedings of the Fourteenth International Conference, pages 313–321, 1997.

R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predic-
tions. Machine Learning, 37:297–336, 1999.

R. A. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine
Learning Research, 4, 2003.

S. Shalev-Shwartz and Y. Singer. Convex repeated games and fenchel duality. In Advances
in Neural Information Processing Systems 19, 2006.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

O. Watanabe. Simple sampling techniques for discovery science. IEICE Trans. Information
and Systems, E83-D(1):19–26, 2000.

31

