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Abstract—We present an approach to interactive machine
learning, in which unlabeled data is employed in conjunction with
active learning to better utilize the valuable resources that the
human oracles provide. We empirically evaluate the approach
in two very different applications, smartphone interruptibility
prediction and semantic parsing. In both applications, we show
that the use of active, semi-supervised training results in an im-
provement compared to a traditionally trained classifier relying
only on full-supervision with random sampling.

I. INTRODUCTION

Historically, computer software has provided lay-users with
only minimal capability to affect the functionality of their soft-
ware. Without knowledge of computer programming, a user
can only modify the software by manipulating pre-set prefer-
ences defined by the author of the software. However, with ma-
chine learning, software can be fundamentally modified after
deployment, allowing for personalization and environmental
adaptation. Yet, many systems that utilize machine learning
are nevertheless delivered to users with static functionality.
In order to allow our software to continue to improve post-
deployment, as well as to expedite system training during
development, we must refine the way our software interacts
with human instructors.

Furthermore, a user’s time is a precious resource, and
learning algorithms should not give prompts for unnecessary
feedback. Previous research has shown that users are willing
to give instruction to a learning algorithm if they perceive the
performance of the system as improving [24], yet questions to
the user should be issued wisely and with discretion. One study
showed that user willingness to answer questions diminished
when they perceived that too many questions were being
posed, even though the accuracy of the learning algorithm
was continuing to improve [32]. This suggests that question
answering alone may be insufficient to produce a good learn-
ing algorithm. Instead, we propose a mixed-initiative learning
strategy that allows a model to improve while only consulting
a user for the most pressing questions. Some of the key ideas
for better utilizing human instructors include the following:
• Information from sources other than the user should be

given to the learning algorithm whenever possible. This
may entail pooling feedback from many users or pro-
viding the learning algorithm with a pre-existing training

set.
• While asking a user for explicit feedback is an expensive

operation, passively observing the user is not. In this way,
we can collect a large corpus of unlabeled data. When
combined with labels given by the user, the learning
problem can now be viewed through the lens of semi-
supervised learning.

• If the user is to be consulted, an active learning frame-
work should be utilized to select the most informative
question to pose. This process can also include a decision-
theoretic component, wherein we only ask the user for
feedback if the potential information gain surpasses the
cost of user annoyance [24].

In this paper we present two applications that entail the use
of human oracles.

In the first application, we seek to learn the interruptibility
of users with mobile devices. In this setting the target function
is unique to the user and the current social context, so most of
the dataset must be collected post-deployment after the user
has begun using the device.

In the second application, we turn our attention to learning a
semantic model for natural language. Using a framework that
incorporates human oracles has two primary advantages: i)
we can hasten the (sometimes arduous) process of training the
model by requiring less supervision, and ii) we gain the ability
to continue improving the model post-deployment through user
interaction.

II. APPLICATION OVERVIEW

A. Smartphone Interruptibility

With the proliferation of mobile devices, interruptibility has
become a defining problem. Users often forget to change the
settings on their mobile devices throughout the day, which
results in inappropriate interruptions or important notifications
being missed [20]. However, modern mobile devices are being
outfitted with broad sensing suites and relatively powerful
computational capabilities, giving those devices the ability to
monitor and adapt to changing social contexts. We introduce
the In-Context smartphone application, which uses a combi-
nation of signal processing, active learning, and supervised
machine learning to create a personalized policy for changing
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Fig. 1. The In-Context framework

a user’s ringtone autonomously. This application leverages
a smartphone’s GPS, accelerometer, microphone, proximity
sensor, and computing power to identify similar contexts and
act according to the user’s observed historical preferences. The
techniques being used in this application could be applied in
any setting in which we wish to personalize an instrumented
system—for instance on a sensor-equipped power-wheelchair,
we may wish to generate customized reminders for the user
to conduct pressure relief exercises.

There are several practical and theoretical challenges in-
volved in building such a system. On a practical level, the
system should be able to operate using only those sensors
found in a standard touch-screen smartphone, without requir-
ing the user to wear additional instrumentation. Furthermore,
the power consumption of the system must be such that the
user can continue to use his or her phone throughout the day.
On a theoretical level, a variety of latent variables, which
the onboard sensors cannot observe, may factor into users’
preferences in different contexts. Also, because the system
is being designed to reduce the intrusiveness of the device,
unnecessary or inappropriate queries of the user should be
avoided.

An overview of the In-Context system is shown in Figure
1. We use information extraction algorithms on the phone’s
sensor data to build a representation of the user’s current
context. In particular, we use a voice activity detection al-
gorithm on audio data and a phone posture recognition al-
gorithm on accelerometer and proximity sensor data. Given
a representation of the current context, we passively monitor
the user’s changes to their hardware ringer setting, as well as
their responses to incoming calls. We treat this behavior as a
noisy reinforcement signal, because users may have forgotten
to change their ringer setting, or they may be basing their
decision on latent variables. For users who consistently change
their ringer setting according to their preferences, the model
trained on the passively collected data is sufficient. However,
we also allow the system to use an active learning framework
to select contexts in which to query the user about their
true preferences in cases where the system has significant
uncertainty about the correct setting in the current context.

Most previous attempts to determine user interruptibility,
in mobile as well as desktop applications, have relied on

active user input to determine their preferences [1], [13], [35].
Some of this work has explicitly considered the user’s current
interruptibility when deciding whether to issue prompts for
input [24], but all of these systems perform poorly with users
who are often unwilling or unable to respond to queries.

Our system expands on previous work in two central ways.
First, we allow the system to learn about users by passively
observing their day-to-day behavior with their phone, such as
when they change the ringer setting or respond to incoming
calls. This allows us to learn an effective model using either a
small number of questions or no questions at all. Secondly,
we leverage a new metric for actively learning, one not
previously used in the application of interruptibility. While
most existing systems have issued questions to the user based
on uncertainty sampling [19], we propose the use of density-
weighted uncertainty sampling [27], which considers how
representative the current context is of other contexts in the
user’s data-set, in addition to the system’s uncertainty about
the current user preference. We discovered that this approach
allows us to attain an aggregate classifications accuracy of
96%, while requiring fewer queries of the user than previous
approaches such as uncertainty sampling.

B. Semantic Parsing

Semantic parsing is the processing of natural language
phrases, with the goal of producing a semantically equivalent
representation in a machine-readable Meaning Representation
Language (MRL). Interest in semantic parsing has grown
significantly in the past few years, as state-of-the-art systems
have begun to exceed human performance in certain non-trivial
domains, such as Jeopardy! competition [7].

Although the accuracy of semantic parsers has risen dramat-
ically, many existing parsers suffer from some key drawbacks.
To begin with, the process of providing the algorithm with
labeled training data is often costly and time-consuming. Many
MRLs have a functional language structure, similar to Prolog.
Annotating a sentence requires familiarity with the semantic
ontology, and even for annotators familiar with the language,
having a human parse a sentence to produce an MRL is slow
and imprecise. Much work has been done recently to minimize
the need for supervision in the training of semantic parsers [4],
[16], [21].

Another disadvantage of most semantic parsers is that they
do not leverage user interaction post-deployment to continue
training. With a fully supervised parser, it would be unrealistic
to imagine that a user would be willing or able to provide
a correct MRL annotation of a sentence. However, as new
methods of supervision have arisen in the literature, it is
becoming possible to learn from users without requiring them
to know anything of the semantic representation language. In
some cases, the user may not even know that they are helping
to improve the system.

We begin with a framework proposed by Clarke, et al [2].
This approach has the distinct advantage of relying on binary
feedback, rather than full supervision. When an annotator
provides a sentence to the parser, the sentence is parsed, and



the resulting MRL is fed into a response generator. The user
then simply tells the system if this response was appropriate
for the input or not. In this way, the MRL representation
of the sentence is completely obfuscated from the annotator.
This eliminates the need for the user to be familiar with the
semantic language, and allows many sentence to be annotated
much more quickly.

We seek to extend this approach by including bootstrapping
and active learning in the framework. In this way, a corpus
of unlabeled data can be used to improve the accuracy of
the classifier without requiring annotation, and annotations
will only be requested for the most informative sentences.
Furthermore, the binary feedback mechanism could allow the
system to continue to learn post deployment by evaluating user
responses. For example, when a user says ”thank you” after
issuing a query to the semantic parser, we can infer that the
query was parsed correctly and add it to the training corpus.

III. RELATED WORK

Although human annotators have been used in machine
learning since its inception, the problem of true interactive
machine learning is less well studied [32]. Many systems that
continually learn from users rely only on labeled data, without
utilizing unlabeled data [24], or they do not leverage any sort
of active learning framework to seek information from users
[6], [39].

A. Interruptibility

Researchers have been studying interruptibility in the field
of human-computer interaction for many years. This research
was initially in the domain of desktop computers, when multi-
tasking applications began introducing irritating interruptions
to users while they worked. Early research focused on using
only information about the state of the user’s software to
determine interruptibility [25], but more recent work has
instead been using sensors to perceive the user’s environment
in order to achieve context-aware interruptibility [8], [11].

The growing popularity of mobile devices has reinvigorated
interest in determining interruptibility. Many users have a
consistent internal model of when and why they want their
mobile device turned on [37], but many of us often forget
to change the device’s settings at the appropriate times. For
many users, autonomously learning their preferences requires
the ability to sense factors in the user’s current environment.
To achieve this, many previous context-aware systems have
required users to place wearable sensors around their body
[10], [29]. However, modern smartphones, like the Apple
iPhone or Google’s Android platform, feature an array of
useful sensors that can allow us to circumvent the need for
specialized hardware. Only a small number of systems have
been designed to leverage the power of these new hardware
platforms when predicting interruptibility [24].

Nearly all previous work in the field of interruptibility
has relied on actively asking the user questions about their
preferences in different contexts [12], [14]. Unfortunately, this
approach leads to scenarios where the system interrupts the

user at inopportune moments in order to issue a query about
their preferences in the current context. Some systems have
alleviated this drawback somewhat by introducing a decision-
theoretic component that allows the system to ask questions
only when the cost of interruption is low [24]. However, when
there is a high cost of asking questions, or when the user
ignores the queries, many of these system fail to perform better
than random guessing.

B. Semantic Parsing

A great deal of work has gone into creating accurate, fully
supervised semantic parsers [41], [42]. These systems tend not
to scale well to large amounts of data due to the costliness of
annotating data with a full equivalent MRL. New approaches
to semantic parsing have tried to lessen the burden of labeling
data by using Markov Logic Networks [21], support vector
machines [16], or binary feedback mechanisms [2]. In general,
the semi-supervised parsers have lower classification accuracy
than their fully supervised cousins when given a fixed amount
of data. What has not been explored in detail is how well the
semi-supervised approaches will scale, but it is believed that
they will perform better than the full supervised models when
only a fixed amount of time is devoted to annotation [2].

While active learning is a very mature and well studied topic
[26], it has only been applied to semantic parsing in limited
ways [34], [36]. Because the cost of annotation is high when
building semantic parsers, it is thought that active learning can
help to make the most of a limited amount of labeled data,
but further study in this field is required [28].

IV. DATASETS

A. Smartphone user study

Data was collected over a seven-day period from five
volunteers using iPhone brand smartphones. The data collected
included readings from the phone’s 3-axis accelerometer, GPS
unit, microphone, proximity sensor, as well as user activity
and responses to incoming phone calls. The state of the user’s
hardware ringer switch (on or off) was also collected with
every sample. Data was read from the sensors for only a ten-
second period once every ten minutes, in order to preserve
the phone’s battery life. Under these conditions, we estimated
that our system is able to run for 23 hours continuously on
an iPhone 4 handset, or 19 hours continuously on an iPhone
3GS. For purposes of system evaluation, each user was also
queried approximately once every two hours to provide their
true preference for the ringer setting in the current context. In
addition, each user was also permitted to provide their current
preference to the system at any time, which would postpone
the next prompt for user input by two hours. The graphical
user interface is shown in Figure 2.

After the raw data was collected, it was passed through
information extraction algorithms on board the smartphone,
and the output of these algorithms was stored. The details
of the information extraction are provided in section V. In
particular, we represented a user’s context using seven core
pieces of information, described in Table I. We have done our



Fig. 2. User interface for data collection

Context feature Details
Phone posture A number in the set {0, 1, 2}

indicating if the phone is
0: Resting on table
1: In user’s hand

2: In pocket or bag
Voice Activity A bit indicated the presence of human speech

Sound level A number in the set {0, 1, 2} indicating
if the sound level is quiet, average, or high.

Hour An integer in 0-23 indicating the hour of the day
Weekday An integer in 1-7 indicating the day of the week
Location The latitude and longitude of the current location.

These numbers are hashed using a secret key
before being recorded to preserve privacy.

Ringer switch The current setting of the hardware ringer switch.

TABLE I
THE REPRESENTATION OF A USER’S CONTEXT

best to minimize the invasiveness of the system on the user’s
privacy by encrypting or deleting data as much as possible.
Although some private information is collected, previous work
suggests that most users are willing to divulge some private
information in return for services with high utility [35].

There are other modes of data which could be collected on a
smartphone but were not used in this study. For instance, only
one of our users reported keeping their smartphone calendar
up-to-date, so calendar events were not collected in our dataset.
Additionally, we did not record the identity of incoming callers
at the request of several of our study participants.

B. GeoQuery

GeoQuery is a database containing facts about American ge-
ography, and it as been used to evaluate many semantic parsers
[42]. The data contains natural language sentences (e.g. ”What
is the population of California?) with equivalent MRL rep-
resentations (e.g. query(population(state(’California’)))). The
data contains 1,130 such pairs, broken into one set of size 880
and one set of size 250. In our work, we set aside 150 samples
from the larger set for the purpose of parameter validation, and
the smaller dataset was used as a testing set.

The ontology present in the GeoQuery dataset includes
many functions, such as population(city), elevation(state),

and length(river), as well as concepts for all the major US
cities, rivers, mountains, and states. When the items of this
ontology are combined, it allows users to ask questions such
as “what is the largest state that the Mississippi river runs
through?”.

V. IN-CONTEXT SYSTEM OVERVIEW

This section describes the primary components of the In-
Context system. The first subsections present the information
extraction algorithms for phone posture recognition and voice
activity detection, as well as the smoothing routine applied
to the output of both. Next, we describe the techniques we
evaluated for predicting a user’s preferences using only the
passively collected reinforcement signal (changes to ringer
settings and responses to phone calls). Finally, we describe
our use of density-weighted uncertainty sampling to select the
contexts in which we wish to issue active queries for the user’s
preferences.

A. Phone Posture Recognition

Previous work has shown that having knowledge of the
user’s physical activities can be used to help determine in-
terruptibility [10]. However, accurately classifying a user’s
activity generally requires one or more accelerometers placed
at known locations around a user’s body. With a mobile phone,
a user may carry the phone in their pocket, purse, or on
their belt, so we do not have a known reference point from
which to conduct activity recognition. Instead, we simplify
the problem to trying to estimate the current physical posture
of the device itself. In this task, we wish to determine if the
phone is resting on a flat surface, if it is being actively held
by the user, or if it is placed in a pocket, purse, backpack, etc.
To address this problem, we collected labeled data from these
three classes, using the 3-axis accelerometer and the proximity
sensor of the phone. The data was divided into overlapping
half-second frames, with the sample mean and variance of the
accelerometer axes recorded for each frame. The number of
times that the proximity sensor was triggered over the half-
second was also recorded. A linear support vector machine
was then trained to differentiate these classes, attaining 91.4%
accuracy over 89 test samples.

B. Voice Activity Detection

Audio data was collected from the smartphone devices at a
sample rate of 8192Hz. Ten seconds of audio was recorded,
and this signal was broken into 20 half-second samples. For
each of these samples, a Fast Fourier Transform is used to
extract 16 features, presented in Table II. We empirically
compared multiple classifiers for use in the voice activity
detection task. A support vector machine with a linear kernel
and a Gaussian mixture model were both trained on labeled
audio samples to differentiate audio samples containing human
speech from samples that do not contain speech. Although
previous work has shown this approach to be effective at
the voice activity detection task [17], [23], there is one
complication that arises in a mobile devices application: the



# Feature Description
1 Fourier mean The sample mean of the magnitudes of

all Fourier coefficients in the sample.
2 Fourier variance The sample variance of the magnitudes

of all the Fourier coefficients.
3 Total signal power The sum of the squared magnitudes

of all the Fourier coefficients
4 Mid-range power The sum of the squared magnitudes

of the Fourier coefficients in the
250-600Hz range of the spectrum.

5 Ratio The ratio of the mid-range power
over the total signal power.

6 Zero crossings The number of zero crossings in the
Linear PCM encoding of the audio signal

7-16 Band power 9 features representing the signal power in
100Hz bands from 1 to 1000Hz. The bands

are 1-100Hz, 101-200Hz...901-1000Hz.

TABLE II
VOICE ACTIVITY DETECTION FEATURES

GMM SVM
In pocket 86.7% 91.3%

Out of pocket 90.5% 95.1%

TABLE III
VOICE ACTIVITY DETECTION ACCURACY

device may be in a user’s pocket or handbag when the sample
is collected, resulting in a significantly dampened signal and
many false-negative predictions by the classifier. Because we
are able to detect when the phone is in a pocket using the
accelerometers and proximity sensor, we train a second speech
detection classifier for this scenario. A linear support vector
machine and Gaussian mixture model were also trained in this
instance, with a new set of trained weights to account for the
dampened signal.

The performance of the classifiers with the phone in and out
of a pocket is shown in Table III. The testing set included many
noisy audio samples without voice activity, such as music and
sounds of car traffic. Based on these results, the linear support
vector machine was selected for deployment in the In-Context
application.

C. Smooth Constraint Learning

Now we consider the problem of trying to smooth the sensor
data predictions, to better fit the structure of the ground truth
labels. This task can be though of as a constraint learning
problem, wherein we constrain data over an interval to share a
label, and we must discover the endpoints of these constraint
intervals. There are two ways that these learned smoothing
constraints can improve performance: applying constraints
during training can improve parameter estimates, and applying
constraints to the predicted labels during classification can
improve accuracy. This approach can be generalized to other
constraint learning tasks, for instance if we are trying to
discover predicate arguments in an information extraction task,
we may believe that some predicates obey a mutual exclusion
constraint that could be discovered autonomously.

Xj+2Xj+1XjX2X1

Yj+2Yj+1YjY2Y1

Z1 Z2

...

...

Fig. 3. An example element of G with interval agreement

We propose a restricted structure learning algorithm that
learns constraints by searching over a class of possible con-
straints supplied by the user. The input to this algorithm is a
class G of graphical model structures which contains possible
expressions of constraints; the algorithm only searches over
graphical model structures within this class. Exactly which
structures are members of G depends on which constraints the
user wishes to encode.

As an example of a class G, we may believe that our
data is arranged in a sequence, with labels adopting the same
value over intervals (such as [11100001111]). This situation
arises naturally in problems with temporal structure, such as
speaker identification. In this case, we would like to enforce
an agreement constraint over intervals of the sequence. For
this problem, we define the class G such that (1) every label
Y t in the sequence is associated with exactly one true interval,
represented by a constraint variable Zi, (2) all labels within a
given interval have the same value, and (3) each interval must
span a minimum number of label variables. In this class, every
label Y t is the parent of exactly one constraint node, and each
constraint node Zi has a continuous set of parent variables
Y t, ..., Y t+k. An example element of G is shown in Figure 3.
As shown in Section VII-A this class G increases prediction
accuracy and quality of parameter estimation significantly
when applied to the smartphone sensor data. Note that G forces
every label variable to participate in a constraint; without
this requirement, we would trivially select a model with no
constraint variables.

The object of structure learning is to select the element of G
which maximizes the data likelihood. Say the structure g ∈ G
contains constraint variables Zg . We can reparameterize the
discriminative objective to include the graph structure:

`D(θ, g) =
∑n
i=1 logP (Zg = 1,Y = yi|X = xi; θ)+∑n+m
i=n+1 logP (Zg = 1|X = xi; θ)

Note that the objective is now a function of both the graph
structure g and the model parameters θ. We propose to
optimize this objective by alternately estimating each set of
parameters. On the tth iteration, we compute:

θ(t+1) ← arg max
θ∈Θ

`D(θ, g(t))

g(t+1) ← arg max
g∈G

`D(θ(t+1), g)

The above optimization over g can be performed efficiently
for many classes G, including the class of interval agreement



constraints.

D. Preference Classification

This section addresses the problem of trying to predict a
user’s preferences in a given context, given their preferences
in previous contexts. We employ a variant of the nearest-
neighbors algorithm for the task of selecting ringer preferences
in different contexts. We compared this algorithm to a variety
of other classification algorithms, including a support vector
machine, decision tree, and naive Bayes algorithms, and found
that the nearest-neighbor algorithms outperformed these alter-
natives.

For the purposes of classification, we use the first six
variables presented in table I as features, and we used the
hardware ringer switch as the classification label. However,
it has been noted in previous work that many users forget to
set their ringer switch to their preferred setting [20], so the
setting of the hardware ringer switch will not always reflect
the user’s true preference. However, we believe that at the
moment a user changes their ringer setting, this setting is most
likely correct for their current context (or near future contexts).
Therefore, rather than treat the ringer switch as a strict binary
label, we think of it more as a reinforcement signal, which
degrades over time. If it has been several hours since the
user set the ringer preference, we are less confident in this
signal, whereas if the switch has just been set, we are much
more confident. To capture this behavior, equation 1 shows
the exponential decay function we use to weight the samples.
In this equation, the weight Wi of datapoint i is based on the
hardware ringer switch, Yi, of this sample, which adopts value
1 if the switch is on and -1 if the switch is off. The exponential
decay parameter λ was selected using the validation set. It was
empirically determined that small changes to these parameters
do not have a significant impact on classifier performance, so
it is not necessary to learn them for each user. The variable h
denotes the number of hours since this setting was selected,
rounded to the nearest whole number. The weight function has
an additional benefit as well. When this system is deployed on
a user’s phone, if the preference classifier is working correctly,
we envision the users no longer needing to change their ringer
setting. By ignoring the ringer setting if it has been a long
time since the user set it, we allow the system to take over
completely when the user is satisfied with the system.

Wi =
{
Yie
−h/λ : h ≤ 12

0 : h > 12
(1)

The distance function for the nearest neighbor classifier
is given in equation 2. This function describes the distance
between two recorded context Ci and Cj . For each feature
d in contexts i and j, we consider the difference |f id − f

j
d |.

For the phone posture, voice activity, weekday, and sound
level features, this is simply the Hamming distance. For
the hour feature, the difference is max(|hi − hj |, 4). For
the location feature, the difference is the indicator function,
denoting whether these two locations are within 150 meters of
one another. For each feature k, we have a distance parameter

dk, which was selected on a validation set taken from a single
user’s data.

D(Ci, Cj) =
6∑
k=1

dk|f id − f
j
d | (2)

Using the distance function given by equation 2, we have
the decision policy given in equation 3. If we wish to pre-
dict the ringer setting for a context C, we take a weighted
summation over the k contexts in the user’s history with the
smallest distance to the current context. If this summation
is non-negative, the algorithm predicts that the user would
like the ringer turned on. Otherwise the ringer is turned off.
It is worth noting that this prediction function gives us an
obvious confidence measure, namely the weighted summation
of distances to the nearest contexts. The larger the magnitude
of this summation, the more confident the algorithm is of the
prediction. Empirical results for this algorithm are given in
section VII.

Pred(C) = I

([
k∑
i=1

Wi

D(C,Ci)2

]
≥ 0

)
(3)

E. Active Learning

Active learning is a framework in which a learning al-
gorithm is able to query an oracle for the label of specific
data-points. In the context of interruptibility, the user acts as
the oracle, and these queries are presented in situ so as to
benefit from the increased accuracy of experience sampling
[3]. In scenarios in which a labeling oracle is available, active
learning has been shown to greatly increase classification
accuracy [26].

Uncertainty sampling is a popular metric for selecting which
points to query the oracle about. With uncertainty sampling,
the data-points that the classification algorithm is most uncer-
tain about are selected for labeling by the active learning oracle
[19]. Entropy is a common measure of algorithm uncertainty,
as given in equation 4. A high entropy value for a data-point,
X , indicates high uncertainty.

H(X) = −
1∑
l=0

P (Y (X) = l|X) log[P (Y (X) = l|X)] (4)

While uncertainty sampling often works well, in our mobile
phone application we are likely to see many samples densely
packed around a small number of contexts (e.g. the user is at
work or at home), plus a small number of previously unknown
contexts (such as when the user tries a new restaurant).
Although the algorithm may be highly uncertain about an
unusual context, such as the restaurant, this context is not
representative of much of the user’s activity, so labeling it
will provide limited benefit.

Therefore, we propose the use of density-weighted uncer-
tainty sampling [27]. In this framework, the algorithm favors
asking the user to label data-points that the system is uncertain
about, but which are also representative of a large number of
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other samples in the data. The metric function for density-
weighted uncertainty (DW) sampling is given in equation 5.
In this equation, sim(X,Y ), is a function representing how
similar two points X and Y are. For our similarity function,
we used the squared reciprocal of the distance function from
equation 2.

DW (X) = H(X)
n∑
i=1

sim(X,Xi) (5)

With density-weighted uncertainty sampling, we wish to
query the label of the sample, X , that maximizes DW (X).
This will be a sample that the algorithm is uncertain about
labeling, but which is also representative of several other data-
points in our dataset. We also use an additional heuristic, in
which the algorithm will not request the label of a point if a
similar data-point has already been labeled.

We collected 50-100 labeled data-points for each volunteer
using the In-Context system. These data-points were collected
using experience sampling, according to a uniform query
schedule. Of these labeled data-points, 50% were set aside
for testing for each user. The remaining labeled data-points
were used to evaluate the benefit of allowing the system
to actively request labels. In the next section, we compare
density-weighted uncertainty sampling to standard uncertainty
sampling, which is the technique used in most previous
interruptibility prediction systems [10], [15].

VI. SEMANTIC PARSING SYSTEM OVERVIEW

This section describes the framework used for the semantic
parsing system. We combine lexical features [5] with syntactic
features given by a dependency tree [18]. Weights over these
features provide a likelihood that a given MRL is correct.
Previous work has shown that Integer Linear Programming
(ILP), while NP-Hard in general, is very effective when used
for the sparse problem of producing a maximum-weighted
MRL given a set of features and weights [22]. This framework
for parsing a given sentence was proposed in [2], and a
graphical representation of the parsing pipeline is shown in
figure 4.

The MRL that is output by the parser after the pipeline
is executed depends on the vector of feature weights, W .
Previous work has shown that these weights can be learned
using only binary user feedback (i.e. the MRL produces a
correct response, or an incorrect response). In our work, we
extend this to include several new modalities of training. The
training steps are shown in figure 5. The process begins by

Full supervision Active learning 
query

Bootstrap with 
unlabeled data

Fig. 5. Learning Regime

Fig. 6. Context-Tree Phrase Structure Tree

providing the parser with a small set of {Sentence, MRL}
pairs with which a working baseline parser is constructed. At
this point, queries are made to the human annotator according
to the active learning framework described in section VI-D.
After a label is received, and the weight vector is updated,
the sentences in the unlabeled dataset are parsed, and the
algorithm’s confidence in these parsings is recorded. Any
unlabeled sentences with sufficient confidence are given back
to the parser with the predicted MRL used as a ground truth
label.

A. Syntactic Features

The Stanford Parser Probabilistic Context-Free Grammar
(PCFG) suite was used to extract syntactic information from
the input sentence [18]. Some of this syntactic information
is computing the lexical features of the sentence, described
in section VI-B, while some information from the syntactic
information is used for separate syntactic features. Figure
6 shows an phrase structure tree generated by the syntactic
parser when applied to the sentence ”How many people live
in New York City?” This tree contains part of speech tags on
each leaf of the tree, and also whole noun phrases, such as
“New York City”.

In addition to the phrase tree, the typed dependency tree of
the sentence is also computed. This tree is used to predict the
semantic relatedness of words in the sentence. For example,
in the sentence “the man with the dog likes to run”, we would
like to know if the predicate likes to run() applies to the man
or the dog. To help understand the relatedness of two phrases
in a sentence, we compute the normalized distance in the
dependency tree between the head words of these two phrases.
In this way, we could infer that likes to run(man) is a more



probable MRL than likes to run(dog), even though they are
both valid semantic representations.

B. Lexical Features

Our system uses WordNet [31] to compute the lexical
similarity of two natural language phrases. In WordNet, words
are organized into synonym sets (synsets), for example the
words “humans”, “mankind”, and “humanity” would share a
common synset. The sysnsets are then organized into tree, with
parenthood representing hypernym-hyponym relationships. As
such, the “humans” synset will be a descendent of the “mam-
mals” synset, but not the “invertebrate” synset. Nouns, verbs,
and adjectives all lie in separate hierarchies.

To compute the lexical similarity of two words using the
WordNet, we utilize the distance of these two words to their
least common subsumer (lcs) in the WordNet tree [18]. All
words in a given hierarchy descend from some common
general concept. We denote l1 the distance to the lcs from
word 1, similarly for l2. We further denote the depth of the
least common subsumer as d(lcd). The WordNet similarity is
described by the following function.

WN(w1, w2) =

 0.3l1+l2 if l1 + l2 ≤ 3
0.33 if l1 + l2 ≤ 2

3 · d(lcs)
0 Otherwise

We also use some syntactic information to inform our com-
putation of lexical similarity. We first use the phrase structure
tree to create a set of constituents from the input sentence,
which includes both the literal words in the sentence (e.g
people) as well as chunked noun phrases (e.g. new york city).
At this stage we also remove determiners, conjunctions, and
the like are removed from the set of constituents. Furthermore,
we use part of speech tags to map the word to the correct
synset tree. For instance, only when used as a noun will the
constituent “in” have strong lexical similarity with the concept
“indiana”.

C. Integer Linear Programming

Given a sentence, a set of weights, w, and feature functions
Φ, we wish to find the MRL representation that best represents
the semantics on the input. To accomplish this, we represent
the mapping of the sentence into an MRL with binary variables
and use an Integer Linear Program to assign values to these
variables.

We denote our ontology as D and our input as X . X
contains the constituents of the sentence. First-order variables
indicate if text phrase c is mapped to ontological item s—we
denote this variable αc,s. Items in the ontology may represent
concepts (such as New York City) or functions (such as
population[x]). Every concept has a type (city, river, etc), and
every function has a list of valid arguments (population[x]
requires that x is of type city or state). To represent a valid
MRL, we must consider how these ontological items are
composed functionally. To represent this, we use second-order
variables. For two items from the input, c, d ∈ X , and two

items from the ontology, s, t ∈ D the variable βcs,dt represents
that these items are composed in the form d(t).

The formulation of the integer linear program is given in
Table IV. We wish to select the MRL that maximizes the
linear weights multiplied over the lexical features Φ1 and
the syntactic features Φ2. We use several ILP constraints
to ensure that the values assigned to these variables after
optimization corresponds to a valid MRL. The first constraint
restrains all α and β variables to be binary, because those
variables denote which ontological items are present and how
they are composed. The second constraint requires that every
constituent from the input text corresponds to exactly one item
in the ontology (which may be the NULL concept). The third
constraint requires that second-order variable βcs,dt is active
if and only if first-order variables αcs and αdt are active.

Integer Linear Programming is NP-Hard, and the problem
as we have formulated it will produce an exact solution. If an
input sentence has |X| = n constituents, and the ontology is
of size |D| = m, there are O(mn) optimization variables for
the ILP to consider. This fast becomes intractable, even with a
modestly sized ontology. Fortunately, the number of variables
that could possibly be active is much lower. We leverage two
properties of the problem structure to regain tractability while
maintaining the optimality of our final solution. These two
properties are lexical feature sparseness and typed dependen-
cies.

We first use lexical feature sparseness to reduce the number
of first-order features, which in turn reduces the number of
second-order features. The average synonym set in WordNet
contains 7.82 entries [40]. Two words will usually only have
non-zero similarity according to the WordNet metric if the
larger distance to the least common subsumer is no more than
three. This means that most words will have non-zero lexical
similarity with only around 100 words, out of the 250,000
common words in the English dictionary. By automatically
setting αcs = 0 when the lexical similarity between c and
s is 0, we can reduce the number of first order variables
considerably. We also only need to consider a second-order
variable if both of its first-order variables could be active, thus
the decrease in second order variables is even more dramatic.

Secondly, we can use the typing of items in the ontology
to restrict the number of second-order variables. Second order
variable βcs,dt can only be active if the composition s(t) is
valid, meaning that s is a function and t has a valid-type to
be an argument to s. We explicitly set βcs,dt = 0 whenever
these requirements are not met.

Using these two methods for reducing the dimensionality
of the optimization problem, we are typically left with an ILP
over 200-400 variables, rather than the one million variables
we would need contend with if no pre-processing was done.
This makes the exact inference tractable to run in an interactive
system, where promptness is essential.

D. Active Learning & Bootstrapping

In this section, we present three candidate metrics for
selecting a sentence to be approved by a human annotator.



Maximize:∑
c∈X

∑
s∈D

αcs ·wTΦ1(X, c, s)

+
∑
c,d∈X

∑
s,t∈D

βcs,dt ·wTΦ2(X, c, d, s, t)

Objective Function

Subject to:
∀(c, s) αc,s ∈ {0, 1}

∀(c, d, s, t) βcs, dt ∈ {0, 1}
(All variables are binary)

Constraint I

∀c
∑
s∈D

αc,s = 1

(Every constituent mapped to exactly one item in Ontology)
Constraint II

∀(c, d, s, t) αc,s

2
+
αd,t

2
≥ βcs,dt

(An ontological combination is active if
and only if both its constituents are active)

Constraint III

TABLE IV
INTEGER LINEAR PROGRAM FORMULATION

Given a corpus of unlabeled sentences, these metrics are
computed for each sentence. An MRL is constructed for the
sentence that is selected, and the GeoQuery database is queried
with the MRL. At this point, the original sentence and the
database response are given to the user, who indicates to the
system that this pair is correct or incorrect. An example pair
that could be given to the user is <”What is the capital of
New York?”, ”Albany”>.

1) Maximum weighted sampling:

w(X) =∑
{αc,s=1}

wTΦ1(X, c, s) +
∑

{βcs,dt=1}

wTΦ2(X, c, d, s, t)

∑
wi

With this metric, we are leveraging the notion that samples
which are labeled as correct by the user are much more
informative than samples which are labeled as incorrect. This
is due to the fact that a correct parsing implicitly gives the
algorithm a good MRL for the sentence, whereas an incorrect
parsing only states that the given MRL was incorrect. In
the equation above {αc,s = 1} denotes the set of first-
order variables that are active after the ILP has been run.
{βcs, dt = 1} is defined similarly.

This approach to active learning will supply the user with
sentences that we already believe are correctly parsed. While
this will give the algorithm more “correct” labels, which
are more informative than “incorrect” labels, we will not be
improving the performance of the parser on labels which are
likely incorrect to begin with.

2) Density sampling:

density(X) =
∑
c∈X

∑
Yi

1
|Yi|

∑
d∈Yi

WN(c, d)

With density sampling, we wish to select sentences which
are representative of many other sentences in the unlabeled
dataset. For given sentence X , we compare the similarity of
X to all other sentences in the corpus, Y . We use normalized
lexical similarity between words to compute the similarity of
these sentences. We assume that X and Yi have already been
syntactically parsed, the constituents have been chunked, and
determiners and conjunctions have been removed.

E. Weighted density sampling

WD(X) = w(X) · density(X)

For our final metric, we combine the two approaches described
above. This will result in an active learning scheme that will
sampling from the denser regions of the unlabeled dataset,
while preferring parsings we believe are correct.

F. Bootstrapping

To conduct bootstrapping between active learning queries,
we leverage the sentence weight described above. Using a
validation set of unlabeled sentences, we compute ẑ95, the 95th

percentile of weights for the current model. Any sentences that
have weight larger than this threshold are labeled as positive
and added to the training set.

ẑ95 ≤ w(X)

VII. RESULTS

A. Smoothing Constraints

We now turn to the smoothing problem, as described in
Section V-C. We will use a speaker identification task to
evaluate the algorithm: given an audio signal, we wish to de-
termine which of three known speakers is talking during each
timestep1. This is a particularly difficult learning problem be-
cause of temporal correlation in the audio signal—if timestep
t is assigned an incorrect label, then all other timesteps in the
temporal neighborhood of t are also likely to be misclassified.

We will leverage the interval agreement constraint described
in Section V-C, and make predictions using a Gaussian Mix-
ture Model on Mel Frequency Cepstral Coefficients as in [33].
Previous work has shown that techniques like Hidden Markov
Models do not work well in similar settings due to sudden
drastic changes in the distribution, as occurs when there is a
change of speakers [30].

We begin with 20 seconds of labeled data for each speaker
(the set L), as well as another 225 seconds of unlabeled data
for each speaker (the set U ). To make predictions, the model
clusters the data from each speaker using k-means (k = 30,
selected using cross-validation), then fits one multivariate

1The audio data used for testing is used courtesy of the Sphinx Speech
Consortium, and is available at http://www.speech.cs.cmu.edu/databases/pda/

http://www.speech.cs.cmu.edu/databases/pda/


TABLE V
PARAMETER ESTIMATION WITH STRUCTURE LEARNING. ENTRIES IN
BOLD ARE STATISTICALLY SIGNIFICANT COMPARED TO THE ENTRY

ABOVE THEM (p < .05 USING A TWO-SIDED t-TEST).

Method Accuracy
Supervised, trained only on L 67.6

Semi-supervised, without constraints 69.7
Semi-supervised, fixed constraints 72.6

Semi-supervised, learned constraints 77.0
classified with P (Y |X; θ)

Fully supervised on L and U 78.8
classified with P (Y |X; θ)

Semi-supervised, learned constraints 94.4
classified with P (Y |X,Z = 1; θ)

Fully supervised on L and U 95.3
classified with P (Y |X,Z = 1; θ)

Gaussian to each cluster. The purpose of clustering is to
produce a set of small peaked Gaussians, rather than one
large highly variant Gaussian. We train the parameters of this
mixture using the algorithm from Section V-C. As baselines,
we trained the same model with (1) no constraints and (2) fixed
constraints over intervals of 50 timesteps. Finally, we trained
a classifier with the ground truth labels of the unlabeled data
to estimate the maximum performance we can expect from
a semi-supervised classifier. The results of these comparisons
are shown in Table V.

After the model parameters have been learned using the
semi-supervised approach, the final accuracy can be improved
further by learning the set of constraints g for the testing set,
and using P (Y |X,Z = 1; θ) for classification rather than
P (Y |X; θ)—this has the effect of smoothing the final output.
The final two entries in Table V use this method. Figure VII-A
shows the impact of using the interval constraints to smooth
the output by overlaying sequences of predicted labels with
the ground truth. The dots indicate the predicted label at each
timestep, and the dotted line indicates the true endpoints of
each interval. The top two graphs in this figure do not use
output smoothing, while the bottom two graphs do.

An important point of this evaluation is that there are two
distinct manners in which constraint learning improves perfor-
mance. Table V shows that training the semi-supervised model
with learned constraints increases accuracy by 8%. Applying
learned constraints to the output improves performance by an
additional 16%.

This approach to smoothing was applied to the output of
the voice activity detection and activity recognition algorithms
used for the In-Context smartphone application.

B. Smartphone interruptibility

Figure 8 shows a comparison of four different classifiers
for predicting ringer preferences. We evaluated the nearest-
neighbors algorithm described in section V-D, a support vector
machine with an RBF kernel, Naive Bayes, and a decision tree
using the information-gain metric. Additionally, the support
vector machine was evaluated on a single user when given the
raw features used for information extraction, rather than the
output of the information extraction algorithms (voice activity
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Fig. 7. Clockwise from top left: un-smoothed semi-supervised without
constraints (69.7), un-smoothed constrained semi-supervised (77.0), fixed
constraint smoothing (91.0), learned constraint smoothing (94.4)

Features RBF SVM accuracy
With Information Extraction 6 95.3%

Without Information Extraction 33 59.3%

TABLE VI
EFFECTS OF VOICE ACTIVITY DETECTION AND PHONE POSTURE

RECOGNITION (INFORMATION EXTRACTION)

detection and phone posture recognition). From the summary
of experimental results, shown in table VI, we see that that
these two information extraction algorithms have a significant
positive impact on classification accuracy.

The effects of active learning queries on classification accu-
racy are shown in figure 9. In this experiment, we compared
the performance of standard uncertainty sampling against
density-weighted uncertainty sampling. The classification ac-
curacy is averaged across all five users. We see that density-
weighted uncertainty sampling consistently outperforms un-
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certainty sampling. When given the maximum number of
active labels (15), the classifier with density-weighted uncer-
tainty sampling attained an average classification accuracy of
96.12% ± 3.37%. This equates to approximately two queries
per day. When the number of queries is dropped to one per day,
the classification accuracy is 87.86%± 5.68%. With no active
queries at all, the classification accuracy is 81.46%± 6.20%.
However, we note that there was one user who did not set his
hardware ringer switch consistently, so the classifier with no
active labels attains only 52.0% accuracy for this user. The
other four users attain an average passive classifier accuracy
of 87.82%.

Hardware ringer switches have not previously been used to
train interruptibility classifiers, presumably because the noise
was thought to be too great. We see that, in general, this is not
the case, with four of our five users attaining a classification
accuracy above 80% with no active labels. One user attained
96.32% accuracy using no active labels. By starting with a
much higher baseline, we need fewer queries to users to push
classification accuracy above 95%. Compared to a system
that relies only on user queries [24], we are able to produce
comparable accuracy with much fewer queries, and much
greater accuracy when the user is willing to answer only a
small number of queries. We additionally see that the density-
weighted uncertainty sampling provides increased accuracy
compared to regular uncertainty sampling. Furthermore, we
conjecture that the density term will prevent the system from
issuing queries every time the user travels to a new context.

C. Semantic Parsing

The results of the GeoQuery evaluation of the semantic
parser are shown in Figure 10. As expected, the inclusion of
bootstrapping and active learning improve the performance of
the parser compared with simply using random sampling to
select data to be labeled. While using the weighted density
active learning metric described in section VI-E, the accuracy
of the parser improved by 7.1%.
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C Correct sentences Accuracy percentage
0.3 158 63.2%

0.01 169 67.6%
0 186 74.4%

TABLE VII
THE EFFECT OF PRE-PROCESSING THRESHOLD C ON PARSING ACCURACY

Results from other semantic parsers on the GeoQuery
dataset are shown on Figure 10, including SCISSOR [9] and
CHILL [42]. SCISSOR and CHILL are capable of interactive
speeds for parsing on consumer hardware, while Clarke et al
is not. The accuracy of our parser exceeds that of the other
real time parsers, while remaining competitive with the more
computationally intensive unconstrained optimization used in
the Clarke parser.

1) ILP Pre-Processing Experiments: For comparison, the
semantic parser was executed with varying degrees of ILP
pre-processing. As described in section VI-C, we explicitly set
the value of αij to 0 if the feature value (lexical similarity) is
below some threshold C. Because the lexical similarity metric
is based on distance in the WordNet synonym trees, WNSim
values only occur at specific discreet values. (0, 0.009, 0.27,
etc). Setting C = 0.3 results in an average of around 200-400
optimization variables, and allows for parsing to be executed in
under a second. Going down below of lexical similarity values
(C = 0.01) results in approximately 5,000 ILP variables, and a
parsing time on the order of 10 seconds. Setting C = 0 results
in an optimal optimization, as was used in [2]. In this case,
there is often hundreds of thousands of variables in the ILP
optimization, and parsing takes 2 to 3 minutes on a modern,
consumer-level, dual-core processor.

From Table VII, we can see the effects of the parameter C
on classification accuracy. Active learning and bootstrapping
were not used in the experiments described in this table.
Training data was selected using random sampling without
replacement. We see that when C = 0, the results we
observe are quite similar to those described in [2], wherein
the author’s report an accuracy of 73.2%. These results imply



that the sacrifices made for parser speed are indeed having a
detrimental effect on parsing accuracy.

VIII. CONCLUSIONS AND FUTURE WORK

We see that both active sampling and semi-supervised learn-
ing on passively collected data are beneficial for classification
accuracy in both of these applications. Future work should
include further evaluation on the effects of using active sam-
pling in an on-line setting. We conjecture that these sampling
schemes could also be combined with a decision theoretic
framework to improve user satisfaction as well as classification
accuracy.

We are looking into new applications in both the context-
awareness and semantic parsing domains.

The algorithms used for smartphone interruptibility are
very general, and other applications should be explored in
the future. The authors are currently working to bring this
work into a smart-wheelchair application, in which the user
of the chair is reminded to conduct pressure relief exercises
according to a personalized model of interruptibility. Smart
homes and automobiles would be other avenues for future
research. The representation of context described in this paper
could also be transmitted off the phone to allow for use in
other devices, for instance a context-aware smartphone could
notify the user’s house that the user is on their way home,
allowing the lights and heat to be activated in preparation
for their arrival. As more of the devices in our environment
become instrumented with sensors, we believe the importance
of context-aware computing will continue to grow, as will the
pressure to minimize the annoyance of being interrupted by
those self-same devices.

Results from the smartphone application also lead us to
believe that post-deployment training of the semantic parser
would be possible as well. The parsing algorithm will be
deployed on an interactive robot, called the GameBot, to
be deployed in a public space. By collecting user responses
to the robot’s dialogue, we suspect that we may be able
to infer in some instances when the robot has correctly or
incorrectly parsed an input, which would allow us to continue
adding to the training corpus in an online fashion. However,
this approach comes with risk of adversarial users trying to
manipulate the robot by corrupting the semantic model. We are
investigating the possibility that we can use facial recognition
software to build a persistent model of user trust. Questions
with known answers could be mixed in with true questions
to gauge a user’s honesty when interacting with the system,
similar to ReCaptcha [38].
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