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Abstract. In order to organize and retrieve the ever growing collection
of multimedia objects on the Web, many algorithms have been developed
to automatically tag images, music and videos. One source of labeled data
for training these algorithms are tags collected from the Web, via collab-
orative tagging websites (e.g., Flickr, Last.FM and YouTube) or crowd-
sourcing applications (e.g., human computation games and Mechanical
Turk). A common approach is to use tags directly as labels for training
algorithms in a supervised way. This approach is problematic, because
the presence of synonyms and misspellings amongst the tags creates a
label space that is overly fragmented, with a huge number of classes,
many of which are sparse and semantically equivalent to one another. In
this work, we investigate a method for training tagging algorithms using
a reduced set of labels corresponding to topics derived from the tags. We
show that our proposed method is comparable, in terms of annotation
and retrieval performance, to the method of using tags directly as labels,
while being more efficient to train (as there are fewer classes) and less
wasteful (eliminating the need to discard tags that are associated with
too few examples). We demonstrate our results using a dataset collected
by a human computation game, called TagATune.

1 Introduction

Over the years, the Internet has become the largest database for multimedia
objects and is organized in a rich and complex way through tagging activities.
Consider music as a prime example of this phenonemon. There is now a prolif-
eration of new applications developed to collect large number of tags for music
over the Web. One example is collaborative tagging websites, such as Last.FM,
which collects on the order of 2 million tags per month [20] from tens of thou-
sands of users. Another example is human computation systems, where people
contribute tags as a by-product of doing a task they are naturally motivated to
perform, such as playing causal web games. For example, TagATune [22] collects
tags for music by asking two players to describe their given music clip to each
other, then guess whether the music clip given to them are the same or different.

In order to effectively organize and retrieve the ever growing collection of
music over the Web, many automatic tag generation algorithms have been de-
veloped [3, 15, 41]. These so-called music taggers are useful for generating tags
for songs that are rarely annotated by any Internet users, such as new music
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that just emerged on the market, or existing music belonging to lesser-known
artists. Once generated, these tags can be used to support music search and
recommendation on a semantic level.

In previous work, the labels used to train music taggers are considered to be
devoid of errors and belonging to a small fixed vocabulary, and hence, can be
directly used for training. In contrast, the tags collected by collaborative tagging
websites or human computation games are noisy, i.e., they can be misspelled,
redundant (due to synonyms), irrelevant to content (e.g., for organizational pur-
pose only), and unlimited in numbers. It is difficult, from a learning perspective,
to know what classes to learn, or determine when the number of examples is
sufficient for training a particular class. It is also computationally inefficient to
train a classifier for each tag, as the vocabulary can grow to be in the tens of
thousands, or millions.

In this work, we present a new technique for classifying multimedia objects by
tags, that is scalable (i.e., makes full use of the huge number of noisy labels that
are freely available over the Web) and efficient (i.e., the training time remains
reasonably short as the tag vocabulary grows). The main idea of our technique is
to organize noisy tags into well-behaved labels using topic modeling, and learn to
predict tags accurately using a mixture of topic labels. Using the TagATune [22]
dataset as a case study, we compare the tags generated by our proposed method
(Topic Method) versus binary classification using tags directly as labels (Tag
Method), both in terms of their relevance for each music clip, as well as their
utility in facilitating the retrieval of relevant music by text. We also highlight a
longstanding issue regarding the evaluation of music classifiers by ground truth
set comparison, which is especially severe on open vocabulary tasks. Specifically,
using the results from several Mechanical Turk studies, we show that human
evaluations are essential for measuring the true performance of tag classifiers,
which the traditional evaluation methods will consistently underestimate. In
addition, tag diversity is found to be an important factor in human judgment
of annotation quality not considered by most evaluation metrics or learning
algorithms.

2 Background

2.1 Music Tagging and Retrieval

The ultimate goal of music tagging is to enable the automatic annotation of large
collections of music, such that users can then browse, organize, and retrieve music
in an semantic way. Although tag-based search query is arguably one of the most
intuitive methods for retrieving music, until recently [3, 8, 15, 41], most retrieval
methods focused on querying by metadata [46] (e.g., artist or album names),
similarity [13], humming [10], beatboxing [19] and tapping [11], or using a small,
fixed set of categories (e.g., genre [43, 44], mood [39], or instrumentation [14]) as
keywords. The lack of focus on music retrieval by semantic tags is partly due to
the lack of labeled data for training music classification algorithms.
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There has been a diverse set of machine learning methods applied to the
classification of music into tags, including Support Vector Machines [25, 26],
Gaussian Mixture Models [40, 41], Boosting [3], Logistic Regression [2], and other
probabilistic models [15]. All of these methods are trained on labels that are on
the order of tens to few hundreds, as opposed to thousands to tens of thousands.
For example, the Gaussian Mixture Model proposed in [40] is trained on a dataset
collected from 66 paid volunteers, with 500 songs and a vocabulary size of 159
unique tags. Bertin-Mahieux et al. [3] retained only 360 of the most popular tags
from Last.FM as labels for training a artist-level tag classifier. This is in contrast
to the TagATune dataset used in this paper, which has over 30,000 clips, over
10,000 unique tags collected from tens of thousands of users.

2.2 Dealing with Noisy Labels

The broad problem that this work addresses is the problem of noise in datasets.
Most previous work focuses on noise that is introduced when examples are mis-
classified into a different class [7, 36, 48], and suggest a variety of methods for
discarding, correcting, or re-weighting instances that are deemed incorrectly la-
beled, in order to improve classification accuracy.

In our work, we address a different noise problem in datasets – the over-
fragmentation of the label space due to synonyms, misspelling and compound
phrases. This label noise problem is readily found in the tags produced by collab-
orative tagging websites (such as last.FM) [20] and human computation games
such as TagATune [22], where an open vocabulary is allowed.

Source Type Example

last.FM content irrelevant albums I own, favorites, awesome
synonyms deutsch, german

misspelling harpsicord (harpsichord)
compound eclectic celtic, political hip-hop

TagATune content irrelevant hello, you’re good too, yes agree
synonyms choir, choral, chorus, singing

misspelling chello (cello), ipano (piano) vioin (violin)
compound country techno, guitar plucking

Table 1. Examples of Noisy Tags.

Table 1 shows examples of noisy tags from last.FM and TagATune by types.
First, some tags are irrelevant to the audio characteristics of the music, and
serve only the purpose of organization (e.g., “albums I own”), expression of
opinions (e.g., “awesome”), or communication with the partner, in the case of
games (e.g., “hello”). The second, and likely the most common, type of noise are
synonyms and misspellings, which render music that should be in the same class
to belong to different classes. Finally, a large portion of the tags are compound
phrases with multiple descriptors. These tags tend to be highly specific, but
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are associated with very few music clips. When used as labels to train a music
tagger, compound tags result in classes that contain very few positive examples.

Some recent work focuses on mitigating the problem of noisy tags from col-
laborative tagging websites, by learning the distinction between content relevant
versus content irrelevant tags [18], or by discovering higher level concepts using
co-occurrence statistics in the tags [21, 24]. However, none of these work ex-
plored the use of these higher-level concepts as labels in training annotation and
retrieval algorithms.

3 Problem Fomulation

This section presents the music annotation and retrieval problem formally. All
vector quantities are denoted in bold. In both problems, we are given as training
data a set of N music clips C = {c1, . . . , cN} each of which has been annotated by
humans using tags T = {t1, . . . , tV } from a vocabulary of size V . Each music clip
ci = (ai, ri) is represented as a tuple, where ai = ZV is a the ground truth tag
vector containing the frequency of each tag in T that has been used to annotate
the music clip by humans, and ri = RM is a vector of M real-valued acoustic
features, which describes the characteristics of the audio signal itself.

The goal of music annotation is to learn a function f̂ : R × T → R, which
maps the acoustic features of each music clip to a set of scores that indicate the
relevance of each tag for that clip. Having learned this function, music clips can
be retrieved for a search query q by rank ordering the distances between the
query vector (which has value 1 at position j if the tag tj is present in the search
query, 0 otherwise) and the tag probability vector for each clip. Following [41],
these distances are measured using KL divergence, which is a common measure
of distance between two distributions. Note that the query vector is a valid
multinomial distribution (i.e. sums to 1) for one-word queries, which are what
we used to evaluate retrieval performance in this work.

4 Proposed Solution

As mention previously, most prior works train music taggers using the ground
truth tags directly as labels. This training approach becomes infeasible when
ground truth tags are collected by applications, such as collaborative tagging
websites or human computation games, that do not enforce a controlled vocabu-
lary. In this work, we propose an new method of generating tags, by first learning
a mapping from audio features to a small set of topic labels that can cover all
tags in the vocabulary, then using these high-level labels to recover the tags that
are the most relevant for any music clip.

The inspiration of our approach comes from the work by Palatucci et al
[34] on zero-shot learning, where the problem is to learn a classifier to predict
a huge number of labels, many of which can be missing from the training set.
The particular application they are interested in, is predicting the word that a
person is thinking about (e.g., dog) from the fMRI image of that person’s brain.
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(a) Training

(b) Inference

Fig. 1. The training and inference phase of the proposed model

To train such a classifier using supervised learning, one would need to create
a dataset containing multiple fMRI images corresponding to each word in the
English language, which would be too costly. Instead, the authors advocate an
alternative method of mapping image features to a set of semantic codes that
can cover all words in the English language (e.g., a boolean vector indicating
the answers to questions such as “Does it breathe under water?”, “Is it slow
moving?”, “Is it furry?”, “Is it carnivorous?” etc). Given a new fMRI image, the
classifier can predict the semantic code of that image, then find the word in the
knowledge base whose semantic code is closest to the prediction [34].

In this section, we will describe in detail the training and inference phase of
our proposed method, as depicted in Figure 1.

4.1 Training Phase

Our training phase (Figure 1(a)) is a two stage process. In the first stage, we
induce a topic model using the ground truth tags associated with each music
clip in the training set. This topic model allows us to infer the topic distribution
of each music clip in the training set, and use these inferred topic distributions
as new labels. The second stage involves training a classifier to predict topic
distributions from audio features.

Stage 1: Topic Modeling using LDA

A topic model [6, 38] is a hierarchical probabilistic model that describes the
process for generating the constituents of an entity (e.g., words of an article [12],
musical notes in a score [17], or pixels in an image) from a set of latent topics. In
the first stage of the training phase, our goal is to drastically reduce the size of
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1 electronic beat fast drums synth dance beats jazz
2 male choir man vocal male vocal vocals choral singing
3 indian drums sitar eastern drum tribal oriental middle eastern
4 classical violin strings cello violins classic slow orchestra
5 guitar slow strings classical country harp solo soft
6 classical harpsichord fast solo strings harpsicord classic harp
7 flute classical flutes slow oboe classic clarinet wind
8 ambient slow quiet synth new age soft electronic weird
9 rock guitar loud metal drums hard rock male fast
10 opera female woman vocal female vocal singing female voice vocals

(a) Topic Model
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(b) woman, classical, classsical,
opera, male, violen, violin, voice,
singing, strings, italian
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(c) chimes, new age, spooky,
flute, quiet, whsitling, whistle,
fluety, ambient, chime, snare,
soft, high pitch, bells

Fig. 2. An example of a topic model learned over music tags, and the representation
of two music clips by topic distribution.

the label space, from thousands of tag labels to tens of topic labels, by learning a
set of topics over the ground truth music tags that were collected by TagATune.

In our topic model, each topic is a distribution over music tags, and each
music clip is associated with a set of topics with different probabilities. Figure
2(a) shows an example of a topic model (with 10 topics) learned over the music
tags collected by TagATune. Figure 2(b) and Figure 2(c) show the topic distri-
butions for two very distinct music clips and the ground truth tags associated
with them (in the caption). The music clip represented by Figure 2(b) is associ-
ated with topic 4 (the “classical violin” topic) and topic 10 (the “female opera
singer” topic), and the music clip represented by Figure 2(c) is associated with
topic 7 (the “flute” topic) and topic 8 (the “quiet ambient music” topic).

In this work, we adopt a widely used method in topic modeling called the
Latent Dirichlet Allocation (LDA) [6], as depicted in Figure 3. Given N music
clips, V unique tags, and K topics, LDA is a probabilistic latent variable model,
where the observed variables (shaded in grey) are ai,j , the ground truth tags
associated with music clip ci, and the hidden variables to be inferred (circled in
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θi Ψkα βZi,j ai,j
V

N K

Fig. 3. Latent Dirichlet Allocation Model.

bold) are: (i) θi, the topic distribution for each music clip ci, (ii) Ψk, the proba-
bility of each ground truth tag aj in topic k, and (iii) Zi,j the topic responsible
for generating the ground truth tag ai,j for music clip ci, where i = 1, . . . , N
and j = 1, . . . , V , and k = 1, . . . ,K.

The central innovation in LDA, over other topic model formulations such
as Probabilistic Latent Semantic Indexing (pLSI) [16], is the use of a Dirichlet
prior on the topic distribution θi (with hyperparameters α = α1 = · · · = αK)
and on the tag distribution Ψk for each topic (with hyperparameter β). These
hyperparameters are fixed.

Together, LDA specifies a joint distribution over observed and hidden vari-
ables. The inference problem, then, is to learn the parameters of the posterior
probability distribution of the hidden variables (θi, Ψk, Zi,j) conditioned on the
observed data (ai,j) and the hyperparameters (α, β). Because it is intractable to
learn this posterior distribution exactly, approximate methods (e.g., Mean Field
Variational Inference [4], Gibbs Sampling [38]) have been used to solve LDA. The
particular implementation used in this work is provided by the Mallet toolkit
[30], which uses the Gibbs Sampling method specified in Steyvers et al [38].

LDA provides an interesting generative story about how players of TagATune
might have generated the tags for the music clips they are listening to. Accord-
ing to the model, each player of TagATune would have a topic structure in mind
when describing music. Given a music clip, the player first selects a topic ac-
cording to the topic distribution for that clip, then generates a tag according
to the tag distribution of the chosen topic. Under this interpretation, our goal
in building a topic model over tags is to discover the topic structure that the
players used to generate tags for music, so that we can leverage a similar topic
structure to automatically tag new music.

Stage 2: Topic Distribution Classification by Maximum Entropy

The topic model derived in stage 1 of the training phase can be used to assign
a ground truth topic distribution to each music clip. In the second stage, our goal
is to learn a function g that maps audio features to topic distributions, using the
ground truth topic distributions as labels for training. Our classifier of choice
is Maxent (maximum entropy classifier) [9], which has been used extensively
in text classification [1, 32], but to our knowledge, rarely for music tagging. The
particular implementation we adopted is from the Mallet toolkit [30], which uses
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Limited Memory BFGS [33] to maximize the likelihood of the parameters, and
a slight modification of the optimization procedure provided by Yao et al [47]
to enable the use of topic distributions, instead of a single topic, as labels for
training the classifier.

4.2 Inference Phase

Figure 1(b) depicts the process of generating tags for new music clips. For an
unseen music clip c′ and given only its audio features, we can use the function
g learned in stage 2 of the training phase to infer the topic distribution of that
clip. Given this predicted topic distribution, each tag can be given a relevance
score for the music clip c′, by multiplying the probability of that tag in each
topic and the probability of that topic in c′, summing over all topics, i.e.

p(tj |ri) =
K∑
k

p(tj |z = k) · p(z = k|ri)

where j = 1, . . . , V , i = 1, . . . , N and k = 1, . . . ,K, In reality, there are many
different ways to generate tags from a topic model. For example, one can add
a restriction that says that the generated tags can only come from the top
Q topics, where Q << K. In future work, we may experiment with different
inference schemes, and compare their effectiveness in generating relevant tags
for music.

5 Experiment

Our goal is to compare our proposed method (Topic Method) against the meth-
ods of generating tags using binary classification (Tag Method) or at random
(Random Method), using 5-fold cross validation. The experiments are guided by
five central questions:

Feasibility Given a set of noisy music tags, is it possible to learn a
reduced representation of the tag space that is (i) seman-
tically meaningful, and (ii) predictable by content-based
features (e.g., timbre, rhythm etc) of the music?

Annotation How accurate are the generated tags?

Retrieval How well do the generated tags facilitate music retrieval?

Efficiency How do the training times compare between methods?

Evaluation To what extent are the evaluations a reflection of the true
performance of the tag classifiers?
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5.1 Dataset

The data is collected via a two-player online game called called TagATune [22].
Figure 4 shows the interface of TagATune. In this game, two players are given
either the same or different music clips, and are asked to describe their given
music clip. Upon reviewing each other’s description, they must guess if the music
clips are the same or different. Since its deployment in May 2008, TagATune has
collected over a million tags from tens of thousands of users.

Fig. 4. TagATune

There exist several human computation games [28, 42] that collect tags for
music that are based on the output-agreement mechanism (a.k.a. the ESP Game
[45] mechanism), where two players must match on a tag in order for the tag
to become a valid label for a music clip. In our previous work [22], we have
shown that output-agreement games, although effective for image annotation,
are restrictive for music data: there are so many ways to describe music and
sounds that players often have a difficult time agreeing on any tags. In TagATune,
the problem of agreement is alleviated by allowing players to communicate with
each other. Furthermore, by requiring that the players guess whether the music
are the same or different based on each other’s tags, the quality and validity of
the tags are ensured. The downside of opening up the communication between
players is that the tags entered are more noisy.

Figure 5 shows the characteristics of the TagATune dataset, in terms of how
many ground truth tags each music clip has, and how many music clips are
available to each tag as training examples. Figure 5(a) is a rank frequency plot
showing the number of music clips (y-axis) that have a certain number of ground
truth tags (x-axis). The plot reveals that a majority of the music clips (> 1500)
have under 10 ground truth tags, with around 1300 music clips with only 1 or
2 ground truth tags, and very few music clips that have a large number (e.g.,



10 Edith Law, Burr Settles, and Tom Mitchell

0 20 40 60 80 100

0
50

0
10

00
15

00

Number of Music Clips 
with Varying Numbers of Ground Truth Tags

Number of Ground Truth Tags

N
um

be
r 

of
 M

us
ic

 C
lip

s

(a) Number of music clips that
have X number of ground truth
tags

0 2000 6000 10000

0
10

0
20

0
30

0

Number of Tags 
associated Varying Numbers of Music Clips

Number of Music Clips

N
um

be
r 

of
 T

ag
s

(b) Number of tags that are asso-
ciated X number of music clips

Fig. 5. Characteristics of the TagATune Dataset

> 100) of ground truth tags. This disparity in the number of ground truth tags
creates a problem in our evaluation – many of the generated tags will not be
found amongst the ground truth tags, and therefore will be considered incorrect
when they are in fact correct. Figure 5(b) is a rank frequency plot showing the
number of tags that have a certain number of music clips available to them
as training examples. The plot shows that the vast majority of the tags have
few music clips to use as training examples, while a small number of tags are
endowed with a large number of examples. This highlights the aforementioned
sparsity problem that emerges when tags are used directly as labels, a problem
that is addressed by our proposed method.

We did a small amount of pre-processing on a subset of the data collected
by TagATune until April 2009, tokenizing tags, removing punctuation and four
extremely common tags that are not related to the content of the music, i.e.
“yes”, “no”, “same”, “diff”. These tags are natural consequences of the game,
since players communicate with each other in other ways beyond just describing
the music [22], such as saying “yes” or “no” to confirm whether the partner’s
tags also describe one’s own music clip, or “same” or “diff” to notify the partner
of the player’s current guess of whether the music is the same or different.

We also eliminated tags that have fewer than 20 music clips available as
training examples, in order to conduct a comparison against the Tag Method,
which requires sufficient amount of training examples for each binary classifica-
tion task. This reduces the number of music clips from 31867 to 31251, and the
total number of ground truth tags from 949,138 to 699,440, and the number of
unique ground truth tags from 14506 to 854. For the purpose of comparison, this
reduced set of ground truth tags is used in both the Topic Method and the Tag
Method. Note that we are throwing away a substantial amount of tag data when
we require that each tag be associated with a minimum number of examples.
A motivation for using topic models to generate tags is that we do not need to
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throw away any tags at all. Rare tags, i.e. tags that are associated with only one
or two music clips, can still be grouped into a topic, and used in the annotation
and retrieval process.

Each of the 31251 music clips is 29 seconds in duration, and is represented
by a set of ground truth tags collected via TagATune, as well as a set of content-
based (spectral and temporal) features extracted using the technique described
in [27]. Spectral features consist of summary statistics (mean and covariance) of
a clip’s Mel-Frequency Cepstral Coefficients (MFCC), which describe the power
spectrum of an audio signal on a scale composed of frequencies that are mean-
ingful to human hearing. Temporal features describe the total magnitude of
different frequency levels over time. The detail of this feature extraction scheme
is available in [27].

5.2 Experiment 1: Feasbility

Table 2 shows the top 10 words of each topic learned by LDA using the tags col-
lected via TagATune with the number of topics fixed at 10, 20 and 30. In general,
the topics are able to capture meaningful grouping of tags, e.g., synonyms (e.g.,
{“choir”, “choral”, “chorus”}, or {“male”, “man”, “male vocal”, “male voice”}),
misspellings (e.g., {“harpsichord”, “harpsicord”} or {“cello”, “chello”}), or as-
sociations (e.g., {“indian”, “drums”, “sitar”, “eastern”, “tribal”, “oriental”} or
{“rock”, “guitar”, “loud”, “metal”} ). As we increase the number of topics, there
emerge new topics that are not captured by topic models with fewer number of
topics. For example, in the topic model with 20 topics, topic 3 (which describes
soft classical music), topic 13 (which describes jazz), topic 17 (which describes
rap, hip-hop and reggae) are new topics that are not evident in the topic model
with 10 topics. We also observe some repetition (or refinement) of topics as the
number of topic increases (e.g., topics 8, 25 and 27 in the 30-topic model all
describe female vocal music, but are slightly different in terms of genre).

It is difficult to know exactly how many topics can succinctly capture the
concepts underlying the music in our dataset. For all our experiments, we empiri-
cally tested how well topic distribution and the best topic can be predicted using
audio features, fixing the number of topics at 10, 20, 30, 40, and 50 topics. Fig-
ure 6 summarizes the results. We evaluated performance using several metrics,
including accuracy and average rank of the most relevant topic, as well as the
KL divergence between the ground truth and the predicted topic distribution.
Although we see a degration of performance as the number of topics increases, all
models (under the accuracy, average rank, KL divergence metrics) significantly
outperform the random baseline, which uses random distributions as labels for
training. Moreover, even with 50 topics, the average rank of the most relevant
topic is still around 3, which suggests that the classifier is capable of predicting
the most relevant topic well. This is crucial, as the most appropriate tags for a
music clip are likely to be found in the most relevant topics for that clip.
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10 Topics
1 electronic beat fast drums synth dance beats jazz electro modern
2 male choir man vocal male vocal vocals choral singing male voice pop
3 indian drums sitar eastern drum tribal oriental middle eastern foreign fast
4 classical violin strings cello violins classic slow orchestra string solo
5 guitar slow strings classical country harp solo soft quiet acoustic
6 classical harpsichord fast solo strings harpsicord classic harp baroque organ
7 flute classical flutes slow oboe classic clarinet wind pipe soft
8 ambient slow quiet synth new age soft electronic weird dark low
9 rock guitar loud metal drums hard rock male fast heavy male vocal
10 opera female woman vocal female vocal singing female voice vocals female vocals voice

20 Topics
1 indian sitar eastern oriental strings middle eastern foreign guitar arabic india
2 flute classical flutes oboe slow classic pipe wind woodwind horn
3 slow quiet soft classical solo silence low calm silent very quiet
4 male male vocal man vocal male voice pop vocals singing male vocals guitar
5 cello violin classical strings solo slow classic string violins viola
6 opera female woman classical vocal singing female opera female vocal female voice operatic
7 female woman vocal female vocal singing female voice vocals female vocals pop voice
8 guitar country blues folk irish banjo fiddle celtic harmonica fast
9 guitar slow classical strings harp solo classical guitar soft acoustic spanish
10 electronic synth beat electro ambient weird new age drums electric slow
11 drums drum beat beats tribal percussion indian fast jungle bongos
12 fast beat electronic dance drums beats synth electro trance loud
13 jazz jazzy drums sax bass funky guitar funk trumpet clapping
14 ambient slow synth new age electronic weird quiet soft dark drone
15 classical violin strings violins classic orchestra slow string fast cello
16 harpsichord classical harpsicord strings baroque harp classic fast medieval harps
17 rap talking hip hop voice reggae male male voice man speaking voices
18 classical fast solo organ classic slow soft quick upbeat light
19 choir choral opera chant chorus vocal vocals singing voices chanting
20 rock guitar loud metal hard rock drums fast heavy electric guitar heavy metal

30 Topics
1 choir choral opera chant chorus vocal male chanting vocals singing
2 classical solo classic oboe fast slow clarinet horns soft flute
3 rap organ talking hip hop voice speaking man male voice male man talking
4 rock metal loud guitar hard rock heavy fast heavy metal male punk
5 guitar classical slow strings solo classical guitar acoustic soft harp spanish
6 cello violin classical strings solo slow classic string violins chello
7 violin classical strings violins classic slow cello string orchestra baroque
8* female woman female vocal vocal female voice pop singing female vocals vocals voice
9 bells chimes bell whistling xylophone whistle chime weird high pitch gong
10 ambient slow synth new age electronic soft spacey instrumental quiet airy
11 rock guitar drums loud electric guitar fast pop guitars electric bass
12 slow soft quiet solo classical sad calm mellow very slow low
13 water birds ambient rain nature ocean waves new age wind slow
14 irish violin fiddle celtic folk strings clapping medieval country violins
15 electronic synth beat electro weird electric drums ambient modern fast
16 indian sitar eastern middle eastern oriental strings arabic guitar india foreign
17 drums drum beat beats tribal percussion indian fast jungle bongos
18 classical strings violin orchestra violins classic orchestral string baroque fast
19 quiet slow soft classical silence low very quiet silent calm solo
20 flute classical flutes slow wind woodwind classic soft wind instrument violin
21 guitar country blues banjo folk harmonica bluegrass acoustic twangy fast
22 male man male vocal vocal male voice pop singing vocals male vocals voice
23 jazz jazzy drums sax funky funk bass guitar trumpet reggae
24 harp strings guitar dulcimer classical sitar slow string oriental plucking
25* vocal vocals singing foreign female voices women woman voice choir
26 fast loud upbeat quick fast paced very fast happy fast tempo fast beat faster
27* opera female woman vocal classical singing female opera female voice female vocal operatic
28 ambient slow dark weird drone low quiet synth electronic eerie
29 harpsichord classical harpsicord baroque strings classic harp medieval harps guitar
30 beat fast electronic dance drums beats synth electro trance upbeat

Table 2. Topic Model with 10, 20, and 30 topics. The topics in bold in the 20-topic
model are examples of new topics that emerge when the number of topics is increased
from 10 to 20. The topics marked by * in the 30-topic model are examples of repeated
or refined topics that emerge as the number of topics is increased.
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Fig. 6. Results showing how well topic distributions or the best topic can be predicted
from audio features. The metrics include accuracy and average rank of the most relevant
topic, and KL divergence between the assigned and predicted topic distribution.
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Fig. 7. Most music clips are assigned only 1 or 2 topics with non-trivial probabilities.

We also experimented with using the most relevant topic as the label to
train the maximum entropy classifier, and observe that it produced the same
results as using the topic distribution as a label for training. There are two
possible explanations. First, Yao et al [47] reported a similar observation, that
the “output of the topic proportion classifier is often overly concentrated on
the single largest topic”. Therefore, this phenomenon can be an artifact of the
particular classifier and optimization method we used. Second, we observe that
for most music clips in the TagATune dataset, the topic model assigns very
high probabilities to only a few topics, and low probabilities for all other topics.
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Figure 7(a) shows the probability of topics at different rank (rank 1= most
relevant topic, rank 10 = least relevant topic), averaged over all music clips. It
reveals that the most relevant topic has average probability of approximately
0.7, followed by the second ranking topic with probability < 0.2, and the third
ranking topic with probability < 0.05, and the rest of the topics with very small
probabilities. Figure 7(b) is a rank frequency plot showing the number of music
clips whose topic distribution have X number of topics with non-trivial (> 0.1)
probability. It is evident that for the majority of music clips in the TagATune
dataset, their topic distributions contain only 1 or 2 topics with non-trivial
probabilities.

5.3 Experiment 2: Annotation Performance

Following [15], we evaluate the accuracy of the top 10 tags for each music
clip, under three different metrics: per-clip metric, per-tag metric and omission-
penalizing per-tag metric.

Per-Clip Metric

The per-clip precision@N metric measures the proportion of correct tags
(according to agreement with the ground truth set) amongst the N tags that
have the highest inferred probabilities for each clip, averaged over all the clips
in the test set. The results are presented in Figure 8.
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Fig. 8. Per-clip Metrics. The light-colored bars represent Topic Method with 10, 20, 30,
40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line
represent the random baseline, and the dotted lines represent its standard deviation.

Topic Model (using 50 topics) and the Tag Method are almost indistinguish-
able under this metric.
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Per-Tag Metric

Alternatively, we can evaluate annotation performance by computing the pre-
cision, recall and F-1 measures for each tag, averaged over all the tags that are
outputted by the algorithm (i.e. if the music tagger does not output a tag, the
scores for that tag are simply ignored). Specifically, given a tag t, its precision
Pt, recall Rt and F-1 measure Ft can be computed as follows:

Pt = ct

at
Rt = ct

gt
Ft = 2 · Pt·Rt

Pt+Rt

where gt is the number of music clips that has the tag t in their ground truth
sets, at is the number of clips that are annotated with the tag t by the tagger,
and ct is the number of clips that has been correctly annotated with the tag t
by the tagger, according to the ground truth set. The overall per-tag precision,
recall and F-1 scores for a test set are Pt, Rt and Ft for each tag t, averaged
over all tags in the vocabulary.
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Fig. 9. Per-tag Metrics. The light-colored bars represent Topic Method with 10, 20, 30,
40 and 50 topics. The dark-colored bar represents the Tag Method. The horizontal line
represent the random baseline, and the dotted lines represent its standard deviation.

Results (in Figure 9) show that the Topic Method significantly outperforms
the Tag Method under this set of metrics.

Per-Tag Metric (Omission Penalizing)

Although informative, two of the metrics – per-clip precision@N and per-tag
precision – are problematic in that a system can output the most common tags,
leaving out the rare ones, and still perform reasonably well under these metric
[41]. In response to this criticism, several previous work [3, 15, 41] has adopted
a set of per-tag metrics that penalizes algorithms for omitting tags that could
have been used to annotate music clips in the test set.
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Fig. 10. Omission-Penalizing Per-tag Metrics. The light-colored bars represent Topic
Method with 10, 20, 30, 40 and 50 topics. The dark-colored bar represents the Tag
Method. The horizontal line represent the random baseline, and the dotted lines rep-
resent its standard deviation. Figure (e) shows the precision of individual tags at rank
1, 21, 41, · · · , 854 etc. It is evident that the Topic Method loses in precision by failing
to output many of the rarer tags.
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Following [15, 41], the omission-penalizing per-tag precision and recall can be
computed as follows:

Pt =
{ ct

at
if present

Et if omitted
Rt =

{ ct

gt
if present

0 if omitted

where Et is the empirical frequency of the tag t in the test set. This specification
penalizes classifiers that leave out tags, especially ones that are rare. Note that
these metrics are upper bounded by a quantity that depends on the number of
tags outputted by the algorithm. This quantity can be computed empirically by
setting the precision and recall to 1 when the tag are present, and Et and 0 when
a tag is omitted.

Results (Figure 10 (a)–(d)) shows that for the Topic Method, performance
increases with more topics, but reaches a platform as the number of topics ap-
proaches 50. We investigated additional models with 60, 70, 80, 90, and 100
topics, and found that this plateau persists in these models. In particular, Fig-
ure 11(a) shows that under the per-tag metric, precision keeps increasing when
we increase the number of topics, but recall hits a plateau. The same perfor-
mance plateau is observed under the omission-penalizing per-tag metric (Figure
11(b)).
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Fig. 11. How performance varies as the number of topics increases.

The performance plateau can be attributed to the fact that the number of
tags outputted by the topic models plateau at around 127 (Figure 11(c)). This
is a somewhat expected, and problematic, behavior of the Topic Method, where
common tags (e.g., classical) tend to be ranked higher in any given topic, and
therefore, are more likely to be generated. The plateau also explains why the Tag
Method outperforms the Topic Method under this metric – it generated roughly
twice the number of unique tags (Figure 10(d)).
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Figure 12, 13 and 14 shows the detailed performance of the Topic Method
(with 10 and 50 topics) and Tag Method for classifying individual tags, con-
firming our intuition about why the Tag Method is performing better than the
Topic Method under the omission-penalizing metrics. Results shows that the
Tag Method omits much fewer tags than the Topic Method, therefore, gaining
precision scores for rarer tags (such as “meditation”, “male and female” etc),
for which the Topic Method receives zeros. The plots also show that the Topic
Method and Tag Method are very similar in their precision, recall and F-1 per-
formance for more common tags (e.g., “opera”, “drums”, “strings” etc), and
that the model with more topics (i.e. 50) generally outperforms that with fewer
topics (i.e. 10) on the same tags.

5.4 Experiment 3: Retrieval Performance

The tags generated by a music tagger can be used to facilitate retrieval. Given
a search query, music clips can be ranked order by the KL divergence between
the query tag distribution and the tag probability distribution for each clip.
We measure retrieval performance using the mean average precision (MAP) [29]
metric, which computes precision (the number of retrieved music clips whose
ground truth tags include the search query) while placing more weight on the
higher ranked clips.
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Fig. 15. Retrieval Performance, in terms of average mean precision

Figure 15 shows the retrieval performance of the three methods under this
metric. The retrieval performance of the Topic Method (with 50 topics) is indis-
tinguishable from the Tag method, and both methods significantly outperform
the random baseline.

5.5 Experiment 4: Efficiency

One of the main motivation behind using the Topic Method to generate tags is
efficiency, i.e., it is much faster to train a classifier to predict 50 topic classes
than 834 tag classes.
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Figure 16 shows a rough estimate of the training time (averaged over folds)
of the different models. While the training time does increase as the number of
topics increases, the training time plateaus and are very similar for topic mod-
els with 30, 40 or 50 topics. The most important observation is that the Topic
Method is approximately 94% times faster to train than the Tag Method, which
confirms our belief that our proposed method will be significantly more scalable
as the size of the tag vocabulary grows.

Experiment 5: Evaluation

The performance metrics we have used so far can only approximate the quality
of the generated tags. The reason is that the ground truth tags collected by
TagATune, which we are using as if they were gold standards, can never be fully
complete. When deciding if a generated tag is accurate, comparison against the
ground truth set will systematically under-estimate performance, due to missing
tags or vocabulary mismatch.

Consider the examples in Table 3. Table 3(a) shows examples of music clips
that have only one or two ground truth tags (in bold). In this case, generated
tags that cannot be found amongst ground truth tags are counted as wrong,
when in fact they are correct. For example, the tags “india”, “oriental”, “mid-
dle eastern” (example i), or “guitar”, “loud”, “drums” (example ii), or “vocal”,
“chorus”, “chant” (example iii) are not considered correct tags, even though
they are either equivalent in meaning to the ground truth tags, or highly corre-
lated and likely to be correct (e.g., in the case of “drums” and “rock”). Figure
3(b) show examples where the ground truth set tags do provide sufficient cover-
age, but because of vocabulary mismatch, there are again many false negatives.
Examples of vocabulary mismatch include “electro” versus “electronic”, “beats”
versus “beat” (example i), or “female voice” versus “female vocals”, “pop” versus
“popish” (example ii), or “celtic” versus “irish”, “medival” versus “medieval”,
or “strings” versus “string” (example iii).
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(a) Missing Ground Truth Annotation

(i) sitar eastern
TP: indian sitar eastern guitar oriental strings middle eastern slow drums arabic
TG: indian sitar guitar eastern slow drums oriental india strings solo
(ii) rock
TP: rock guitar male male vocal pop loud man vocal metal drums
TG: rock male male vocals male vocal guitar male voice pop loud man vocals
(iii) singing
TP: choir choral opera vocal vocals chorus chant singing female classical
TG: choir choral vocal opera singing chorus vocals female voices woman

(b) Vocabulary Mismatch

(i) faster jazzy beat fast disco guitar dance pop cymbals drums rock 80s upbeat electro
TP: electronic drums synth rock beat fast guitar dance electro beats
TG: electronic beat drums synth electro fast electric beats guitar rock
(ii) woman popish female voice pop female vocal female singer synth
TP: female woman vocal female vocal female voice singing pop vocals female vocals voice
TG: female woman pop female vocal singing vocals female voice vocal guitar female vocals
(iii) celtic classic violins violin medival strings
TP: classical violin guitar strings slow irish harp classic violins country
TG: classical strings violin classic guitar fiddle violins string baroque medieval

Table 3. In bold are the ground truth tags. TP and TG refers to the Topic Method
and Tag Method respectively.

Annotation Performance

In order to compare the true merit of the competing approaches, we con-
ducted a Mechanical Turk experiment where we ask humans to evaluate the
tags generated by the Topic Method (with 50 topics), Tag Method and Ran-
dom Method. We randomly selected a set of 100 music clips (20 in each fold)
and solicited evaluations from 10 unique turkers for each music clip. For each
clip, the turker is given three lists of tags, generated by the Topic Method, Tag
Method, and the Random Method respectively. The order of the three lists are
randomized to eliminate any presentation bias. The turkers are asked to (1) click
the checkbox beside a tag if that tag is appropriate for the music clip (i.e. de-
scribes the music well), and (2) rank order the three lists based on how well they
describe the music clip overall. Figure 17 shows the interface for the Mechanical
Turk annotation experiment.

Figure 18 shows the per-tag precision, recall and F-1 scores as well as the per-
clip precision scores of the three methods, when we evaluate tags by comparing to
the ground truth set versus using human evaluation. Results show that when tags
are judged based on whether they are found amongst the ground truth tags, the
performance of the tagger is grossly underestimated under any metrics. In fact,
of the tags (generated by either Topic Method or Tag Method) that the turkers
considered as “appropriate” for any music clip, on average, approximately 50%
of them are not found in the ground truth sets.

While the performance of Topic Method and Tag Method are similar in this
experiment, when asked which list of tags the human user prefers the most, sec-
ond most and the least, the average numbers of votes (out of 10) are 6.20 for
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Fig. 17. Mechanical Turk Annotation Experiment: Interface
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Fig. 18. Mechanical Turk Annotation Experiment: Results
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the Tag Method, 3.34 for the Topic Method, and 0.46 for the Random Method,
in strong favor of the Tag Method. Our hypothesis is that people actually pre-
fer the Tag Method because its tag coverage is better than the Topic Method.
This observation has interesting implications for how tags should be evaluated,
individually versus as a whole.

Retrieval Performance

We conducted a similar experiment for evaluating retrieval performance. Fig-
ure 19 shows the interface for the Mechanical Turk annotation experiment.

Fig. 19. Mechanical Turk Retrieval Experiment: Interface

Similar to the annotation task, our hypothesis is that the retrieval perfor-
mance of the three methods, under the mean average precision metric, is un-
derestimated because many of the retrieved music clips are false negatives if the
search query cannot be found amongst their ground truth tags. To test this hy-
pothesis, we ran a similar Mechanical Turk experiment, where we provide each
turker a search query and three lists of music clips retrieved for that search query
by the Tag Method, Topic Method and Random Method. Again, the order of the
lists is randomized to prevent presentation bias. There are 100 one-word queries
in total, and 3 users for evaluating the music clips retrieved for each query. Users
are asked to check the checkbox of each music clip that they consider “relevant”
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for the query. In addition, they are asked to rank order the three lists in terms
of their overall relevance to the query.
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Fig. 20. Mechanical Turk Retrieval Experiment: Results

Figure 20 shows the mean average precision, when the ground truth tags
versus human judgment is used to evaluate the relevance of each music clip in
the retrieved set. Results show that when humans evaluate the retrieved list, the
mean average precision of all methods are significantly higher than if we use the
ground truth tags as the judge.

Finally, when asked which list of music clips the turker prefers the most,
second most and the least, the average numbers of votes (out of 3) are 1.17 for
the Tag Method, 1.78 for the Topic Method, and 0.56 for Random Method, in
favor for the Topic Method.

6 Conclusion and Future Work

The purpose of this work is to show how classification algorithms can be trained,
in an efficient way, to recognize the characteristics of some objects (e.g., music)
when the training data consists of a huge number of noisy labels. Focusing on
music tagging as the domain of interest, we showed that topic models can be
used to define a reduced set of labels, using which the task of mapping from
audio features to tags is made more efficient. Our proposed method opens up
the opportunity to leverage the large number of tags freely available on the Web
for training classification algorithms.

We compared the Topic Method and Tag Method on five criteria: feasibil-
ity, annotation performance, retrieval performance, computational efficiency, and
annotation and retrieval performance as judged by human evaluators. Our main
results show that our proposed method is feasible and both data-efficient (i.e.,
can utilize an arbitrary open vocabulary of tags) and time-efficient (i.e., reduces
training time by 94% compared to learning from tag labels directly), achieves
comparable performance for annotation and superior performance for retrieval.
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An interesting finding is that despite the comparable annotation performance,
human evaluators preferred the Tag Method, which we believe can be attributed
to its superior tag coverage.

Future Work

The training phase of our method is a currently a two-step process: we first
learn a topic model over tags, then learn a mapping from audio features to
topic distributions. In the future, we may investigate a training procedure that
combines the two steps into one. For example, there has been recent work on
topic models that are learned from not only text, but other metadata associated
with the documents, such as sLDA [5] and DMR [31]. Another class of methods
to investigate are semi-supervised techniques for performing factorization and
classification simultaneously, such as Support Vector Decomposition Machine
(SVDM) [35] or Collective Matrix Factorization [37].

Our work exposes the problem of evaluating tags when the ground truth sets
are noisy or incomplete. Following the lines of [23], an interesting direction would
be to build a human computation game that is suited specifically for evaluating
tags, and which can become a service for evaluating any music taggers.

Finally, an exciting application area for this work is birdsong classification.
To date, there are not many, if any, databases that would allow a birdsong to be
retrieved by text, e.g., using arbitrary tags such as “high-pitched”, “cheep cheep
chirp”, “black-throated sparrow”. Given the vast number of descriptions for any
particular birdsong, it would be difficult to train a classification algorithm to
map from audio features to tags directly, as most tags may be associated with
only one or two birdsongs as examples. In collaboration with Cornell’s Lab of
Ornithology, our plan is to use TagATune to collect tags for birdsongs from the
tens of thousands of citizen scientists, and attempt to re-apply the technique
here to train a classifier for automatically tagging birdsongs, so that they can
be retrieved easily by semantic queries.
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