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Abstract

Students interacting with educational software generate dn their use of soft-
ware assistance and on the correctness of their answers.dats comes in the
form of a time series, with each interaction as a separate pizint. This data
poses a number of unique issues. In educational researthtsrehould be in-
terpretable by domain experts, which strongly biases Iegrtowards simpler
models. Educational data also has a temporal dimensiorighggnerally not
fully utilized. Finally, when educational data is analyaesing machine learning
techniques, the algorithm is generally off-the-shelf wittle consideration for
the unique properties of educational data. We focus on tbblgm of analyz-
ing student interactions with software tutors. Our objexts to discover differ-
ent strategies that students employ and to use those $&sitegoredict learning
outcomes. For this, we utilize hidden Markov model (HMM)stlering. Unlike
some other approaches, HMMs incorporate the time dimemsiothe model. By
learning many HMMs rather than just one, the result will ut# smaller, more
interpretable models. Finally, as part of this process, ame eéxamine different
model selection criteria with respect to the models’ prediis of student learn-
ing outcomes. This allows further insight into the propestof model selection
criteria on educational data sets, beyond the usual cragation or test analysis.
We discover that the algorithm is effective across multipleasures and that the
adjustedR? is an effective model selection metric.

1 Introduction

Educational software is an increasingly important parturhn education. Many schools use ed-
ucational software as a major component in classroom adarind individuals are using special-
ized software for diverse purposes such as second-langeggesition and extracurricular tutoring.
Likewise, the analysis of data from educational softwaral$® a growing field. Individuals in-
teracting with an educational system generate sizabletigiearof time-stamped data, ranging in
granularity from individual mouse movements to attempt@dtons. This data offers insight into
an individual's underlying cognitive processes and hagtitential to guide future educational in-
terventions.

However, the temporal-sequential aspect of educatiortalis&requently underutilized. In brief, the
usual approach to analyzing educational data is to compsét af features, e.g. average number
of attempts, and to then input those features into an offsttedf machine learning algorithm in an
attempt to predict learning between separately admimidtpre-tests and post-tests. These features
usually do not incorporate a significant temporal aspedeafsom the student’s response time, i.e.
the time between a stimulus, such as a problem statementhangsponse, such as a solution



attempt. By not incorporating the entirety of the data, ipafarly the ordering of actions, such
analyses do not realize the data’s full potential.

In a computer tutoring system, the log data may be treatedtiaseaseries with variable intervals
of observation. If the performance on each task is conditlgindependent given the student, i.e.
solving a math problem step does not require successfui@aduto prior steps, then each task can
be treated as a separate sequence of observations. Thistepor sequence can be considered
a segment of a time-series. For example, if a student regjbeft at the beginning of the step and
then attempts solutions until they solve the step, thakelia different strategy than if a student
attempts to solve the step and, upon failing, requests help.

In this paper, the concept of student strategies is ingt#atiby hidden Markov models (HMMSs).
HMMs are graphical models which treat observed data as areddequences of symbols. HMMs
will be discussed in more detail in the Background sectiamwéwver, the primary observation is,
by learning many different HMMs from educational data, eBdliM can be treated as a model of
a different student strategy. Prior work in educationahdatning has largely focused on learning
single, complicated models that describe all possibleesttidehaviors. The advantages of collec-
tions of HMMs are four-fold: they have disjoint observatiothe observations are ordered, they are
much easier to interpret, and they provide extremely a¢eyeedictions. Further, the algorithm
we propose offers several advantages over standard HMMediug algorithms: it has adaptive
parameters, biases strongly towards smaller models, anithcarporate external measures.

The remainder of this paper is divided into several sectiofise Background section covers the
relevant machine learning literature. The Method sectiescdbes a number of unique properties
to our method, including data preprocessing. The Datasedigscribes the two data sets used in
this study. The Results section includes both model priedistand interpretations, reported across
multiple parameterizations and data sets.

2 Background

A hidden Markov model (HMM) is a set of unobserved states goee by the Markov property
where the relationship between an unobserved state andttied abservations derives from a prob-
ability distribution. In short, an HMM is a probabilistic figtion of an unobserved Markov chain
[4]. More specifically, graphical models are a series of it states with the transitions between
states determined by a probability matrix. The Markov propeequires that the state of a model at
timet is exclusively dependent on the state of the model at timel. No prior states are relevant.
An HMM additionally requires that the probability of obsérg a symbol at time depends only on
the model’s state at time For this paper, symbols will correspond to types of stu@etibns in a
computer tutoring system. Observed symbols are calledsgonis in the HMM literature and, for
this paper, all HMMs will use discrete emissions.

In general, the following parameters uniquely describévastate discrete HMMV/: the statesS;
(0 <i < N); the initial probability of M starting in stateS;, written asr;; the transition probability
from stateS; to S;, t;;; the alphabet of symbols; and the emission probability of a symhbo] for
statei (o € X, 0 < k < |X]|). A detailed introduction to HMMs is available in Rabiner] ghd a
thorough treatment of inference in HMMs is available in Gapp al. [5]

For this paper, a series of observed symbols will be calleshaance. The Baum-Welch algorithm
allows for efficient estimation of the parameters of an HMMaegi a set of observed sequences
[3]. In short, given that a set of student sequences are iassdavith an HMM, the Baum-Welch
algorithm can relearn the parameters of that HMM to bettehétobserved data. Given an HMM
and an observed sequence, the Forward-Backward algoriéinncalculate the probability of that
observed sequence conditioned on the parameters of the HMd&e two algorithms are the core
of any HMM clustering algorithm.

2.1 Clustering

The Baum-Welch algorithm only learns the parameters fongleaiHMM, but there is a straight-
forward extension to learning sets of HMMs with clusteririgirst, define a set of HMMs\/ as
a collectionC'. Given a set of observed sequenégsvhere each sequenge € @ is a series of



observed symbols € X, a partition of the observatior@ for a fixed number of partition&’ is
P = (Py,...,Px), whereVg; € Q3k s.t. ¢; € P,. The goal of a clustering algorithm is to
maximize the objective function:

K

F(P) =11 II Pr(alrw) (1)

k=1i€Py

wherePr(g;| M) is the probability of observing a sequenggiven the paramaterization of a model
M. Replacing the probability with the likelihood and takirgetlog of the objective function, the
result is a standard clustering objective function:

FPY=>">" UalMy) )

k=1ieP;

Objective functions of this form have historically beeniopzed with Expectation-Maximization
(E-M) algorithms and, for HMM clustering, given an initisdtsof HMMs, the usual algorithm is of
the form:

Input: sequence s&p, model counts’, initial collectionC® of modelsM, 0 < k < K
Output: collectionC

iterationt = 0;

while termination criteria not satisfiedo

iterationt = ¢ + 1;

create partition setB;, 0 < k < K;

foreach sequence; € @ do

find the best modet = arg maxy, I(q;| M}~ ");

assign sequengg to partitionP};

end

foreach M;~' € C*~1 do

M} = Baum-Welch{z;~*,P});
assignM{ to C*

end
end

returnC’;
Algorithm 1: HMM-Cluster

Possible termination criteria include any of the followingjng below some threshotd

e Change in log-likelihoodA - 1(g:|C)
e Number of changed label3”, ., 6(q: € Py~ ', q: € Pk #1)

e Maximum change in the size of a partitiomaxo<i<x A|Px|

HMM-Cluster converges to a local maximum because Baum-Welch convergkda any given
clustering iteration, both relearning the parameters apantitioning the observed sequences are
monotonic operations with respect to the likelihood. FerthilMM-Clusterwill never change the
size of the collectior or the number of states per mod€l In general, if seeded with a collection
of initial models (chosen randomly or with a heuristic), Hasic structure of each model will remain
constant; only the parameters and partitions will change.

There have been many prior uses of similar E-M HMM clustegtgprithms. One of the earliest
uses was by Rabiner et. al., who used clusters of HMMs for weedgnition [10]. More recently,
the predominant application has been to analyzing geneession data [12]. Others have also
looked at HMM clustering algorithms for analyzing text celua [6]. There have been many
improvements suggested, including processing sequenitieslynamic time warping [8], more
principled methods for generating candidate HMMs [13], asthg spectral clustering instead of



Student Step Action Duration
S01 | TRIANGLE-EQUIL-COMP | Hint-Request| 21.501
S01 | TRIANGLE-EQUIL-COMP | Hint-Request| 34.706
S01 | TRIANGLE-EQUIL-COMP | Hint-Request| 2.134
S01 | TRIANGLE-EQUIL-COMP | Hint-Request| 1.507
S01 | TRIANGLE-EQUIL-COMP | Hint-Request| 1.269
S01 | TRIANGLE-EQUIL-COMP Attempt 2.941

Table 1: Example Tutor Step

partition-based clustering [7]. Jebara et. al.'s work oecsgal clustering with HMMs is especially
important as a potential avenue for future work [7].

Some of the prior work on E-M HMM clustering uses fixed valumsA and for the number of states
(V) per initial model [8]. Other examples use fixed initial vadufor K, but allow the merging or
splitting of clusters. For example, Schliep uses “modeyswy”, which merges and splits clusters
based on the total size of each cluster [12]. However, it idaar which merge/split criteria are
optimal. We will instead uselMM-Clusteras a subroutine for another algorithm, and so will limit
it to fixed values of andNV.

One particular aspect of prior work bears extended disons&-M clustering of HMMs comes in
two predominant flavors: strict assignment (k-means styte) probabilistic assignment (mixture
models). In the first case, each sequence is assigned to drm&grone HMM during each iteration
of the clustering algorithm. In the second case, each seguisnassigned a probability vector
across all clusters, ignoring group-membership decistwrmostponing them to a post-processing
step. The probabilistic approach is usually expected twigeoa better fit [2]. However, we favor
strict assignment for practical reasons. First, strisigasnent E-M is simply faster, allowing us to
explore a greater range of possible algorithm parametatpaasible HMMs. This is especially
important as this work is heavily exploratory, applying HMMstering methods to a heretofore
untried domain. Second, practically speaking, it is easienterpret strict membership and also
significantly easier to construct domain-general prirespdr educational interventions using strict
membership. Thus, even with a soft, probabilistic methgarureaching the interpretation stage,
we would still force a strict cluster assignment for eachusege. So, while there are advantages to
soft-assignment methods such as mixture models, a stritth@eship approach is sufficient for our
purposes.

3 Data

We consider two data sets extracted from log files of the Gégn@ognitive Tutor. In the tutor,
students are presented with a geometry problem and sevepsy éext fields. A step in the problem
requires filling in a text field. The fields are arranged systtically on each problem page and
might, for example, ask for the values of angles in a polygdiothe intermediate values required
to calculate the circumference of a circle.

Both data sets originate in earlier experimental studiesugh only the control groups for each
study will be used.

In each data set, a problem is defined as a series of steps eimdtep as a series of transactions.
A student transaction is defined by the following four-tupl&tudent,Step,Action,Duration An
action can be either an “Attempt” or “Help Request”. Eachadsgt consists of a series of these
transactions, categorized by step and student. An exarguéssshown in Table 1.

02- This data set originates in an experiment published in 2[102The control condition includes
21 students and 57204 actions divided into 3740 steps.

06- This data set originates in an experiment published in 200§ The control condition includes
16 students and 7429 actions divided into 2367 steps.

Both data sets are similar in that they cover the same gegmaits and use the same general
interface, though there are some differences in both doowitent and interface layout. The most



Attempt | Help Request
Fast | Guess Drill
Slow Try Reason

Table 2: Mapping from{ Action,Duratior) to one variable

important difference in the data lies in the students’ distion of actions and steps. In the 06 data,
students exhibit far fewer actions per step, which compggany direct comparison between results
for the two data sets. The other difference of note is thaDthpost-test included counterbalanced
hint conditions between problems, e.g. sometimes allowogto show a hint at the cost of partial
credit. This makes the test scores noisier so the expeasai@ lower for quality fits on the 06 data.
In a sense, the 06 data was chosen because it is hard.

4 Method

A student action is defined by the following four-tupléStudent,Step,Action,Duratipn Once
actions are conditioned on students and steps, what remsatmstuple( Action,Duratior) . While

it is technically possible to directly analyze the data iis tvo-dimensional, partially continuous
space, the results are difficult to interpret. Instead, icems threshold of seconds which divides
actions into “fast” and “slow” actions. There exists a maggpirom the bivariatéAction,Duratior)
tuple to a single four-category variable, shown in Table 2.

Guessing and Trying are fairly self-explanatory: a guessssispected attempt to solve using the
system’s correctness-feedback while a try is a suspectethjt to solve using actual problem-
solving techniques. A drill is rapidly requesting hintsppably without reading them, either to get
a more concrete hint or to reach the solution (final hint). &smed hint request is when the student
is assumed to read the hint. These four categories will beealgtedG, D, T, andR.

Define a sequencg € () to be thei-th step performed by a studentEach sequence is then a series
of observations front = {G, D, T, R}. After applying some learning algorithm, e.g. a randomly-
seededHMM-Cluster, @ will be partitioned such that eag]f is assigned to one modél,. Let

ar = {¢1¢; € My} be the set of all sequences in partitionThere are then several approaches for
estimating the relationship between the partitidrand external measures of learning (denoted by
G):

e Maximum Correlation with the Absolute Count (per modetyixo<i<x p(gr, G)

e Maximum Correlation with the Ratio (per modehiaxo<x« x p(ﬁ, G)
- o<i<rk 1

¢ Linear Regression, i.e. fitting a regression model and &atiog R? or adjusted??

For this paper, all learning gain measures are pre-testdbtpet learning gain, by student. There is,
however, an additional subtlety with respectipit can be measured in absolute terfpest— pre),

in terms of adjusted gai ?ftﬁ%a ), or in terms of z-scores. This paper will focus on the a@jdst

gain, as the data sets used are significantly non-normar @ifects) and absolute learning gain is
not an interpretable concept between curricula.

Within this framework HMM-Clusterhas several problems:

e Like most E-M algorithmsHMM-Cluster gets trapped in local maxima that can be sig-
nificantly worse than the global maximum, potentially requg many random restarts to
approximate the best fit.

e The choice of values fof{ and N will determine the effectiveness 6fMM-Cluster. If
they are too large,’ will overfit @; if they are too small, no collectioff will fit @ well.

e By default, direct measures of fit will bias towards largdues of K and N. The resulting
collections will not only overfit, but will be very difficulitinterpret.

e K andN are fixed and non-adaptive.



In principle, a better algorithm would search over valuegiodnd N with a bias towards smaller
and fewer models, allowing for higher test-set accuracyeasier interpretation of models. 1t would
also do this in a way that would allow the algorithm to increnadly find better local maxima. One
such algorithm isStepwise-HMM-Clustemwhich is toHMM-Clusterwhat stepwise regression is to
normal regression. Lédew-HMMgk,n) be shorthand for a function that retufnsew HMMs with

n states each.

Input: sequence s&p,student sef, student learning gains
Output: collectionC

iterationt = 0;
modelsK = 2;
statesV = 2;

collectionC? = New-HMMs(K,N);
while termination criteria not satisfiedo
iterationt =t 4 1;
relearnCt~! = HMM-Cluster@,K,C*~1);
create partition setg}, 0 <k < K,0 <5 < 5,
foreach sequence; € @ do
find the best modet = arg maxy, I(q;| M} ");
let s; € S bet the student acting in sequenge
assign sequencg to partition P;;
end
ignificant modelsk = Regressiorn®,[Fy,. . . .Px]);
oreach M,~' € C*~! do
if M}~' € Rthen
| assignM}~'to C*;
end

ol )]

end
if model count criteria satisfiethen
| K=K+1;
end
if state count criteria satisfiethen
| N=N+1;
end
Ct = C'U New-HMMs(K — |Ct|,N);

end

returnC?;
Algorithm 2: Stepwise-HMM-Cluster

A critical step inStepwise-HMM-Clusteis the selection of “good models” from a collectigh
This choice is determined with regression. In this papemngeforward stepwise linear regression.
The number of sequences classified by each model for eacdngtisdised as the input (along with
the total sequences per students) and the learning gaiadsassthe output. For example Mfy was
the best fitting model on 20 sequences for Student 0 and 1@segs for Student 1, and; was
the best fitting model on 15 sequences for Student 0 and 2®segsi for Student 1, the regression
approximations would be:

Go =~ [o+B1*20+B2%10
G Bo + B1 % 15 + B2 * 25

Q

Critically, this selection step allows the incorporatidneaternal (test-score) data to improve the
model. This is a persistent problem in applying machineniear algorithms to educational data
where many data sources, such as the pre-post gain, do iipfaeter into off-the-shelf algorithms.
For future work, many other data sources could be added asugather student data (e.g. grade-point
average) or some form of researcher labeling.

There are a variety of possible termination criteriaStepwise-HMM-Clusteand many options for
model countincrementing criteria and state count incréimguriteria. In this paper, we will use the



7 | MAC(Train) | MAC(Test) | MRC(Train) | MRC(Test) | Adj-RZ(Train) | RZ(Test) | Adj-R2T(Train) | RZT(Test)
6 0.62 0.73 0.7 0.73 0.29 0.33 0.29 0.33
8 0.66 0.72 0.76 0.67 0.31 0.25 0.35 0.25
10 0.67 0.72 0.75 0.66 0.33 0.29 0.37 0.29

Table 3: Best possible metric scores for 02

simplest choices: given a constant limit on consecutivatiens:, a constant limit on the number
of modelsk, and a constant limit on the number of states per modélthe overall regression fit
(adjustedR?) does not improve significantly after at leastonsecutive iterations, increment the
number of statesV used byNew-HMMs If N = v already, increase the number of allowed states
K and resetNV = 2. Terminate the algorithm when there have beeonsecutive non-significant
iterations, but botli’ = x andN = v.

In generalNew-HMMscan generate candidate HMMs using heuristics or througletredearning
paradigm, but for our purposes, candidate HMMs are gergveitb randomly chosen parameters.
We will use a value of = 2, allowing for one extra “bad” result before continuing t@ thext level
of complexity.

5 Results

There are five metrics we will consider for estimating theliqyaf a collection:

e Bayesian Information Criterion (BIC)
e Maximum Absolute Correlation (MACYnaxo<k<x P(qk, G)
e Maximum Ratio Correlation (MRCnaxo<<k p(ﬁ G)

0<I<K a)’
o (Adjusted-)?? of a linear regression without total count (R2)
¢ (Adjusted-)R? of a linear regression with total count (R2T)

The first metric (BIC) forms a baseline. BIC offers a cheaptloé-shelf method for controlling for
overfit, but it also has known biases and limitations. Howgvés a standard method that still sees
frequent use, and is included here for comparison and asetitas

The correlations, MAC and MRC, describe the best prediatioany single HMM in a collection.
They are useful for three reasons. First, itis easier topnét a single HMM, rather than interpreting
a mathematical function over a set of models (such as witlgeession). Second, it is easier to
construct an intervention from only one model at a time. Bnas will be shown later, in most
cases, two (almost linearly dependent) model-partiti@msidate other model-partitions in the same
collection. When two models classify the majority of obsshgequences, there is little difference
between the maximum correlation and the bigétvalue. However, MAC and MRC also “cheat”.
While they are ostensibly based on the correlation of only MM with learning gain, that one
HMM is part of a greater collection. It classifies a subseggfieences because other HMMs classify
some sequences better; without the other models, even acbigblating HMM is useless as its
partition would contain all observed sequences. The gémeeapretation of these collections will
be that two models are usually the “best” classifiers, butdttzer models serve to remove specific,
non-useful sequence types from those models’ partitions.

R? and R?T are the metrics that best match the construction processofections inStepwise-
HMM-Cluster. Linear regression is the simplest method of incorporatifgrmation from all mod-
els in a collection into a single prediction. In generat T will provide the best fit on training data,
in part becaus&tepwise-HMM-ClusteusesR*T to select optimal collectionsk? and R2T are
adjusted for the number of parameters when reported onngadata, but are not adjusted when
reported on test data. In general, the adjustment will naotdied here after, except in table column
he2aders. Instead, the difference will be indicatedi3yTrain) versusik?(Test), and similarly for
R*T.

Table 3 is taken from the 02 data and details the maximum sdmeeach gain metric across
different values of the time threshold for both the training data and withhel@0(%) test data.
Each row represents one runStepwise-HMM-Clusteat a fixed value of-.



7 | Models | Max States| MAC(Train) | MAC(Test) | MRC(Train) | MRC(Test) | Adj-R2(Train) | RZ(Test) | Adj-R2T(Train) | R2T(Test)
6 5 3 0.61 0.58 0.7 0.71 0.29 0.24 0.29 0.24
8 5 4 0.58 051 0.73 0.59 0.31 0.18 0.31 0.11
10 7 4 057 054 0.71 053 0.325 0.23 0.3125 0.25

Table 4: Best collections for 02, chosen By(Train)

58% 58%

1199|100 100{0|010

Figure 1: Dominant model for = 6, 02 data

The primary purpose of Table 3 is to show the optimal, besecaetrics, especially fak?(Test)
and R?T(Test). In practice, we have to choose a single collect@rfidture predictive purposes,
and cannot select using our test measure. However, thedadwes our optimal test-set result, if we
could choose perfectly, is about 0.33.

Table 4, also taken from 02 data, shows the results from éhgalse “best” collections, i.e. the
collection, per choice of, with the highest adjusted R2(Train) score. It also showesiimber of
models in the best collection and the maximum number of S{a¢e model in that collection. The
R?(Test) andR?T(Test) columns are particularly important as they represest-set validity. For
7 = 6 andr = 8, the R%(Test) results represent at least 80% of the best possiilsde prediction.

Additionally, whereR?(Train) andR?T(Train) are equal, there was no significantimprovememnfro
adding the total count to the stepwise regression. The sdiae's that, for the 02 data, this is usually
the case. However, when= 10, R?(Train) andR2T(Train) are not identical. From empirical tests,
it is generally true that on the 02 data, selecting the bdkatmn with R2(Train) is more effective
than selecting wittR?T(Train); this will not hold for the 06 data.

The test-sef2? and R2T fits are all reasonable, with fairly predictive models for= 6 andr = 10.

A 0.25 R? value is equivalent to a 0.5 correlation, which is very respele for predicting overall
unit pre-post learning gain using only logged tutor data.difidnally, this methodology uses no
domain knowledge, which makes the result more impressideganeralizable.

To better understand the results, it's worth noting thatlithaee optimal collections shown, there

is a single dominant HMM that classifies at least 40% of thaisages and has a 0.5 or better
correlation with learning gain (when computed on the tragnilata). In all three collections, the

model generates predominantly Tries and Guesses. Showw beé two examples of dominant

HMMs for - = 6 andr = 8. The emissions are shown as a table of probabilities, whath e

heading corresponds to an action symbol, e.g. T for Try.

In both cases, the models emit Tries and Guesses with highapility and emits both symbols
equally often (over the course of many sequences). Onelpessiplanation is that these models
actually select short sequences where the student alreamyskthe answer and thus, where they
can solve the step in one try. This would indicate that thdesttihas learned the material. However,
a quick correlation between the frequency of first-try-eotrsequences and learning gain nets a
—0.24 correlation. Instead, an alternative interpretation @&sthmodels is that they represent a
persistence-trait. Students who attempt to solve replyaeel more likely to learn the material than
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Persistent Vestigial

Attempts State

Figure 2: Dominant model for = 8, 02 data

15% 82%

Systematic

Guessing

Figure 3: Try-Guess model for= 6, 02 data

those that rely on hints. This is borne out by the durationeatjc nature of the model, which emits
both Tries and Guesses, as well as the lack of hints as a geobaission.

However, this raises a conflict between the results and cansmose. The models shown in Figure
1 and Figure 2 have a high probability of emitting a sequeridgpe TGGGGG, i.e. a single Try
followed by many Guesses. This is, in the educational liteeg considered a very poor learning be-
havior. Intuitively, it represents a failed attempt to sofallowed by repeated, unthinking guessing.
This disagreement can be resolved by noting that no singléefrin any collection can be inter-
preted alone. Each model exists only as part of the entileat@n, and as such, other models in
the collection can remove specific degenerate sequendestfier = 6 collection as an example.
It contains a model, shown below, that has a high probalmfigmitting Try-Guess type sequences.

The general interpretation of these results is that stsdeatn more when using persistence-type
strategies, so long as they don't just guess repeatedlgrdstingly, this is largely independent of
the choice of threshol@. This suggests that, at least for this rangeradind for persistent-type
strategies, the duration is not relevantlong asstudents do not engage in repeated guessing. This
issue will be further addressed in the Conclusions section.

It's possible, however, that selecting with a different riegetsuch as BIC, would yield better col-
lections. Figure 4 shows the BIC scores for collections sn@2 data forr = 6, plotted against
the AdjustedR?(Train) and R?(Test) metrics. Figure 4 clearly shows that the BIC score&as
non-linear relationship with learning gain prediction, losth training and test data, and that BIC
is a poor metric for choosing collections of HMMs. There majsebetter metrics than BIC or
R2(Train) for this task, but it's clear that?(Train)'s success is non-trivial.
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Figure 4: BIC scores versu??(Train) andR?(Test), = 6, 02 data

7 | Models | MaxStates | Adj-RZ(Train) | RZ(Test) | Adj-R2T(Train) | RZT(Test)
6 3 8 0.26 0.26 0.35 0.26
8 3 5 0.18 0.19 0.28 0.22
10 6 5 0.44 0.19 0.49 0.17

Still, this result may be data-set dependent, so an expatiorea second data set is essential. For
this, there is the 06 data, which, compared to the 02 datadiffasent students in different class-
rooms using a different version of the Geometry CognitivéoTwith different pre-post tests. It's
generally a “harder” data set due to noise in the tests, feaguences, and shorter sequences. Un-
fortunately, as a result, a direct application of the aboe¢hwd is ineffective: if the best collections
are chosen using thg?(Train) metric, none of them have decent test-set resultiact, none of the
top 5 R%(Train) collections for each choice afhave test-set performance on par with the 02 data

results.

Practically, there are reasons to suspett (Train) is a better metric for the 06 data, regardless of
the test-set performance. There is more variation in thebauof sequences between students in the
06 data than in the 02 data, which suggests a greater impertanthe total number of sequences in
any regression. Unfortunately, at first glance, selectingbr (Train) does not improve results. The
top collections still have poor test-set performance, irt pacause they have 7 or 8 models apiece.
However, within the top 3 collections for each choicerpthere is a collection with a nearty2 R?2
score on test-data. These collections all have one thingrimeon: fewer models. They are shown

in Table 5.

Table 5: Best collections for 06, chosen BYT(Train)

8%

88%

Figure 5: Dominant model for = 6, 06 data
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Forr = 6 andT = 8, the otherR?T(Train) collections have at least 7 models, so if a stricter
complexity penalty was used, it would likely select the 3dw®locollections. For = 10, this is not

as clearly evident. However, putting aside the choice déctibn, these best collections exhibit the
same overall form as was seen in the 02 collections. For ebeating dominant model for = 6 is
shown in Figure 5. The interpretation of this model is the sa® the models from Figure 1 and
Figure 2, namely that of persistence. The presence of thitehio the best collections across data
sets and values of is highly suggestive that persistent-attempts is a verittigmt strategy.

In general, across all collections shown, hint-heavy stjias are negatively associated with learn-
ing. However, this should not be interpreted too broadlyniviaf the more complex collections (4
or 5 models) contain a “noise” model which generates mostiptessequences with nearly uniform
probability. Thus, the hint-heavy strategies are actuadlyy focused on specific types of hint re-
quests, usually Drill requests. Some positive-learningef®involve hints as well. For example, in
Figure 5, there is actually a 30% chance of generating a Read®mn as the first action, before a
series of attempts.

6 Conclusions

Using a traditional HMM clustering algorithm with fixed vas of K, the number of models, and
N, the number of states per model, it is possible to find catlestof HMMs that predict learning.
These models not only predict learning, but because the Hitelselatively small, they are human-
interpretable as classes of student strategies. Howénghasic learning algorithm requires many
random restarts, and it's unclear how to prevent the algoritrom “fishing” for results and thus
overfitting.

An alternative approach is to iteratively increase the @alof X’ and NV, keeping at each iteration an
optimal collection of HMMs from prior iterations. This apgach, calledstepwise-HMM-Clustere-
quires fewer clusterings to converge to a highly prediatiaglel. Further, it avoids pre-hoc choices
for K and NV, biases strongly towards smaller models, provides betttrdet predictions, and in-
corporates external measures of learning gain.

We showed that usin§tepwise-HMM-Clustefound collections with high training-set prediction
accuracy, even after adjusting for the number of models inlleation. Further, for the 02 data,
withholding part of the data as a test-set still resulteddcugate predictions, on the order of a 0.5
correlation. For the other data, a more heavily penalizégtten criterion would select collections
with similar correlations. This algorithm satisfies thenpairy goals of an educational data mining
method: it produces interpretable models, provides gosdfitoss data sets, and not only fits the
tutor data, but predicts actual learning outcomes.

Additionally, generalization from a learning sciencesspective is not a simple matter of successful
predictions on test data: it requires the production of galnearning principles that can be applied
independently of any given parametric modé&tepwise-HMM-Clusteproduced such a general
principle. Our results provide a strong argument that ba#ffolding as it is presently used is not
actually very effective and that most learning results frrsistent attempts to solve. This suggests
a new paradigm for tutoring system design that emphasirempts and provides hints or worked
examples only when strictly necessary to keep the studemainathg in the curriculum.

There are several directions for future work. First, priesgarch has shown that spectral cluster-
ing of HMMs tends to outperform E-M clustering of HMMs. Spetitclustering had an additional
advantage of returning only a single result. However, iisalear how to constrain spectral cluster-
ing methods to produce interpretable models, or how to ah&emels appropriate for educational
data. Second, there is room 8tepwise-HMM-Clusteto incorporate additional data, whether it
be student-level data or expert background knowledge.ub@ear which data sources are useful.
Second, foiStepwise-HMM-Clustetthe choice ofr is a difficult one. A more principled method
for choosing the threshold value would be useful, but mongortantly, an understanding of the
role of time in student-tutor action sequences would beliraldle. For example, it's possible that
there are three types of actions (“Fast”,“Medium”, and 81p or that there are different opti-
mal thresholds for different types of actions. One apprdaatesolving this question would be to
learn models that use continuous distributions for engjttnrations and to use those distributions
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to set the thresholds. Thresholding the duration is stiéatial in the long-term to produce general
learning principles.

There are also questions of generalization. First, dosstigthod or do these models generate to
other domains? Can a single collection be learned suchttbanhibe used (perhaps after some data
preprocessing) to predict learning in other data sets? Andfwe principle of persistence be applied
to either future tutor designs or to the creation of educationterventions such that there is an
improvement in actual student learning?
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