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Abstract

Students interacting with educational software generate data on their use of soft-
ware assistance and on the correctness of their answers. This data comes in the
form of a time series, with each interaction as a separate data point. This data
poses a number of unique issues. In educational research, results should be in-
terpretable by domain experts, which strongly biases learning towards simpler
models. Educational data also has a temporal dimension thatis generally not
fully utilized. Finally, when educational data is analyzedusing machine learning
techniques, the algorithm is generally off-the-shelf withlittle consideration for
the unique properties of educational data. We focus on the problem of analyz-
ing student interactions with software tutors. Our objective is to discover differ-
ent strategies that students employ and to use those strategies to predict learning
outcomes. For this, we utilize hidden Markov model (HMM) clustering. Unlike
some other approaches, HMMs incorporate the time dimensioninto the model. By
learning many HMMs rather than just one, the result will include smaller, more
interpretable models. Finally, as part of this process, we can examine different
model selection criteria with respect to the models’ predictions of student learn-
ing outcomes. This allows further insight into the properties of model selection
criteria on educational data sets, beyond the usual cross-validation or test analysis.
We discover that the algorithm is effective across multiplemeasures and that the
adjusted-R2 is an effective model selection metric.

1 Introduction

Educational software is an increasingly important part of human education. Many schools use ed-
ucational software as a major component in classroom curricula and individuals are using special-
ized software for diverse purposes such as second-languageacquisition and extracurricular tutoring.
Likewise, the analysis of data from educational software isalso a growing field. Individuals in-
teracting with an educational system generate sizable quantities of time-stamped data, ranging in
granularity from individual mouse movements to attempted solutions. This data offers insight into
an individual’s underlying cognitive processes and has thepotential to guide future educational in-
terventions.

However, the temporal-sequential aspect of educational data is frequently underutilized. In brief, the
usual approach to analyzing educational data is to compute aset of features, e.g. average number
of attempts, and to then input those features into an off-the-shelf machine learning algorithm in an
attempt to predict learning between separately administered pre-tests and post-tests. These features
usually do not incorporate a significant temporal aspect aside from the student’s response time, i.e.
the time between a stimulus, such as a problem statement, andthe response, such as a solution
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attempt. By not incorporating the entirety of the data, particularly the ordering of actions, such
analyses do not realize the data’s full potential.

In a computer tutoring system, the log data may be treated as atime-series with variable intervals
of observation. If the performance on each task is conditionally independent given the student, i.e.
solving a math problem step does not require successful solutions to prior steps, then each task can
be treated as a separate sequence of observations. Thus, each step or sequence can be considered
a segment of a time-series. For example, if a student requests help at the beginning of the step and
then attempts solutions until they solve the step, that is likely a different strategy than if a student
attempts to solve the step and, upon failing, requests help.

In this paper, the concept of student strategies is instantiated by hidden Markov models (HMMs).
HMMs are graphical models which treat observed data as an ordered sequences of symbols. HMMs
will be discussed in more detail in the Background section; however, the primary observation is,
by learning many different HMMs from educational data, eachHMM can be treated as a model of
a different student strategy. Prior work in educational data mining has largely focused on learning
single, complicated models that describe all possible student behaviors. The advantages of collec-
tions of HMMs are four-fold: they have disjoint observations, the observations are ordered, they are
much easier to interpret, and they provide extremely accurate predictions. Further, the algorithm
we propose offers several advantages over standard HMM clustering algorithms: it has adaptive
parameters, biases strongly towards smaller models, and can incorporate external measures.

The remainder of this paper is divided into several sections. The Background section covers the
relevant machine learning literature. The Method section describes a number of unique properties
to our method, including data preprocessing. The Data section describes the two data sets used in
this study. The Results section includes both model predictions and interpretations, reported across
multiple parameterizations and data sets.

2 Background

A hidden Markov model (HMM) is a set of unobserved states governed by the Markov property
where the relationship between an unobserved state and the actual observations derives from a prob-
ability distribution. In short, an HMM is a probabilistic function of an unobserved Markov chain
[4]. More specifically, graphical models are a series of discrete states with the transitions between
states determined by a probability matrix. The Markov property requires that the state of a model at
time t is exclusively dependent on the state of the model at timet − 1. No prior states are relevant.
An HMM additionally requires that the probability of observing a symbol at timet depends only on
the model’s state at timet. For this paper, symbols will correspond to types of studentactions in a
computer tutoring system. Observed symbols are called emissions in the HMM literature and, for
this paper, all HMMs will use discrete emissions.

In general, the following parameters uniquely describe anN -state discrete HMMM : the statesSi

(0 ≤ i < N ); the initial probability ofM starting in stateSi, written asπi; the transition probability
from stateSi to Sj , tij ; the alphabet of symbolsΣ; and the emission probability of a symbolσk for
statei (σk ∈ Σ, 0 ≤ k < |Σ|). A detailed introduction to HMMs is available in Rabiner [9] and a
thorough treatment of inference in HMMs is available in Cappé et. al. [5]

For this paper, a series of observed symbols will be called a sequence. The Baum-Welch algorithm
allows for efficient estimation of the parameters of an HMM given a set of observed sequences
[3]. In short, given that a set of student sequences are associated with an HMM, the Baum-Welch
algorithm can relearn the parameters of that HMM to better fitthe observed data. Given an HMM
and an observed sequence, the Forward-Backward algorithm can calculate the probability of that
observed sequence conditioned on the parameters of the HMM.These two algorithms are the core
of any HMM clustering algorithm.

2.1 Clustering

The Baum-Welch algorithm only learns the parameters for a single HMM, but there is a straight-
forward extension to learning sets of HMMs with clustering.First, define a set of HMMsM as
a collectionC. Given a set of observed sequencesQ where each sequenceqi ∈ Q is a series of

2



observed symbolsσ ∈ Σ, a partition of the observationsQ for a fixed number of partitionsK is
P = (P1, . . . , PK), where∀qi ∈ Q∃k s.t. qi ∈ Pk. The goal of a clustering algorithm is to
maximize the objective function:

F (P ) =

K∏

k=1

∏

i∈Pk

Pr(qi|Mk) (1)

wherePr(qi|Mk) is the probability of observing a sequenceqi given the paramaterization of a model
Mk. Replacing the probability with the likelihood and taking the log of the objective function, the
result is a standard clustering objective function:

f(P ) =
K∑

k=1

∑

i∈Pk

l(qi|Mk) (2)

Objective functions of this form have historically been optimized with Expectation-Maximization
(E-M) algorithms and, for HMM clustering, given an initial set of HMMs, the usual algorithm is of
the form:

Input: sequence setQ, model countK, initial collectionC0 of modelsM0
k , 0 ≤ k < K

Output: collectionC
iterationt = 0;
while termination criteria not satisfieddo

iterationt = t + 1;
create partition setsPk, 0 ≤ k < K;
foreach sequenceqi ∈ Q do

find the best modelk = arg maxk l(qi|M
t−1
k );

assign sequenceqi to partitionP t
k;

end
foreach M t−1

k ∈ Ct−1 do
M t

k = Baum-Welch(M t−1
k ,P t

k);
assignM t

k to Ct

end
end
returnCt;

Algorithm 1: HMM-Cluster

Possible termination criteria include any of the followingbeing below some thresholdǫ:

• Change in log-likelihood:∆
∑

qi∈Q l(qi|C)

• Number of changed labels:
∑

qi∈Q δ(qi ∈ P t−1
k , qi ∈ P t

l , k 6= l)

• Maximum change in the size of a partition:max0≤k<K ∆|Pk|

HMM-Clusterconverges to a local maximum because Baum-Welch converges and, for any given
clustering iteration, both relearning the parameters and repartitioning the observed sequences are
monotonic operations with respect to the likelihood. Further, HMM-Clusterwill never change the
size of the collectionC or the number of states per modelN . In general, if seeded with a collection
of initial models (chosen randomly or with a heuristic), thebasic structure of each model will remain
constant; only the parameters and partitions will change.

There have been many prior uses of similar E-M HMM clusteringalgorithms. One of the earliest
uses was by Rabiner et. al., who used clusters of HMMs for wordrecognition [10]. More recently,
the predominant application has been to analyzing gene expression data [12]. Others have also
looked at HMM clustering algorithms for analyzing text cohesion [6]. There have been many
improvements suggested, including processing sequences with dynamic time warping [8], more
principled methods for generating candidate HMMs [13], andusing spectral clustering instead of
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Student Step Action Duration
S01 TRIANGLE-EQUIL-COMP Hint-Request 21.501
S01 TRIANGLE-EQUIL-COMP Hint-Request 34.706
S01 TRIANGLE-EQUIL-COMP Hint-Request 2.134
S01 TRIANGLE-EQUIL-COMP Hint-Request 1.507
S01 TRIANGLE-EQUIL-COMP Hint-Request 1.269
S01 TRIANGLE-EQUIL-COMP Attempt 2.941

Table 1: Example Tutor Step

partition-based clustering [7]. Jebara et. al.’s work on spectral clustering with HMMs is especially
important as a potential avenue for future work [7].

Some of the prior work on E-M HMM clustering uses fixed values forK and for the number of states
(N ) per initial model [8]. Other examples use fixed initial values forK, but allow the merging or
splitting of clusters. For example, Schliep uses “model surgery”, which merges and splits clusters
based on the total size of each cluster [12]. However, it is unclear which merge/split criteria are
optimal. We will instead useHMM-Clusteras a subroutine for another algorithm, and so will limit
it to fixed values ofK andN .

One particular aspect of prior work bears extended discussion. E-M clustering of HMMs comes in
two predominant flavors: strict assignment (k-means style)and probabilistic assignment (mixture
models). In the first case, each sequence is assigned to one and only one HMM during each iteration
of the clustering algorithm. In the second case, each sequence is assigned a probability vector
across all clusters, ignoring group-membership decisionsor postponing them to a post-processing
step. The probabilistic approach is usually expected to provide a better fit [2]. However, we favor
strict assignment for practical reasons. First, strict-assignment E-M is simply faster, allowing us to
explore a greater range of possible algorithm parameters and possible HMMs. This is especially
important as this work is heavily exploratory, applying HMMclustering methods to a heretofore
untried domain. Second, practically speaking, it is easierto interpret strict membership and also
significantly easier to construct domain-general principles or educational interventions using strict
membership. Thus, even with a soft, probabilistic method, upon reaching the interpretation stage,
we would still force a strict cluster assignment for each sequence. So, while there are advantages to
soft-assignment methods such as mixture models, a strict membership approach is sufficient for our
purposes.

3 Data

We consider two data sets extracted from log files of the Geometry Cognitive Tutor. In the tutor,
students are presented with a geometry problem and several empty text fields. A step in the problem
requires filling in a text field. The fields are arranged systematically on each problem page and
might, for example, ask for the values of angles in a polygon or for the intermediate values required
to calculate the circumference of a circle.

Both data sets originate in earlier experimental studies, though only the control groups for each
study will be used.

In each data set, a problem is defined as a series of steps and each step as a series of transactions.
A student transaction is defined by the following four-tuple: 〈 Student,Step,Action,Duration〉 . An
action can be either an “Attempt” or “Help Request”. Each data set consists of a series of these
transactions, categorized by step and student. An example step is shown in Table 1.

02 - This data set originates in an experiment published in 2002[1]. The control condition includes
21 students and 57204 actions divided into 3740 steps.

06 - This data set originates in an experiment published in 2006[11]. The control condition includes
16 students and 7429 actions divided into 2367 steps.

Both data sets are similar in that they cover the same geometry units and use the same general
interface, though there are some differences in both domaincontent and interface layout. The most
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Attempt Help Request
Fast Guess Drill
Slow Try Reason

Table 2: Mapping from〈 Action,Duration〉 to one variable

important difference in the data lies in the students’ distribution of actions and steps. In the 06 data,
students exhibit far fewer actions per step, which complicates any direct comparison between results
for the two data sets. The other difference of note is that the06 post-test included counterbalanced
hint conditions between problems, e.g. sometimes allowingyou to show a hint at the cost of partial
credit. This makes the test scores noisier so the expectations are lower for quality fits on the 06 data.
In a sense, the 06 data was chosen because it is hard.

4 Method

A student action is defined by the following four-tuple:〈 Student,Step,Action,Duration〉 . Once
actions are conditioned on students and steps, what remainsis the tuple〈 Action,Duration〉 . While
it is technically possible to directly analyze the data in this two-dimensional, partially continuous
space, the results are difficult to interpret. Instead, consider a threshold ofτ seconds which divides
actions into “fast” and “slow” actions. There exists a mapping from the bivariate〈Action,Duration〉
tuple to a single four-category variable, shown in Table 2.

Guessing and Trying are fairly self-explanatory: a guess isa suspected attempt to solve using the
system’s correctness-feedback while a try is a suspected attempt to solve using actual problem-
solving techniques. A drill is rapidly requesting hints, probably without reading them, either to get
a more concrete hint or to reach the solution (final hint). A reasoned hint request is when the student
is assumed to read the hint. These four categories will be abbreviatedG, D, T , andR.

Define a sequenceqs
i ∈ Q to be thei-th step performed by a students. Each sequence is then a series

of observations fromΣ = {G, D, T, R}. After applying some learning algorithm, e.g. a randomly-
seededHMM-Cluster, Q will be partitioned such that eachqs

i is assigned to one modelMk. Let
qk = {qs

i |q
s
i ∈ Mk} be the set of all sequences in partitionk. There are then several approaches for

estimating the relationship between the partitionP and external measures of learning (denoted by
G):

• Maximum Correlation with the Absolute Count (per model):max0≤k<K ρ(qk, G)

• Maximum Correlation with the Ratio (per model):max0≤k<K ρ( qk

(
∑

0≤l<K
ql)

, G)

• Linear Regression, i.e. fitting a regression model and calculatingR2 or adjustedR2

For this paper, all learning gain measures are pre-test to post-test learning gain, by student. There is,
however, an additional subtlety with respect toG: it can be measured in absolute terms(post−pre),

in terms of adjusted gain ((post−pre)
(1−pre) ), or in terms of z-scores. This paper will focus on the adjusted

gain, as the data sets used are significantly non-normal (floor effects) and absolute learning gain is
not an interpretable concept between curricula.

Within this framework,HMM-Clusterhas several problems:

• Like most E-M algorithms,HMM-Clustergets trapped in local maxima that can be sig-
nificantly worse than the global maximum, potentially requiring many random restarts to
approximate the best fit.

• The choice of values forK andN will determine the effectiveness ofHMM-Cluster. If
they are too large,C will overfit Q; if they are too small, no collectionC will fit Q well.

• By default, direct measures of fit will bias towards larger values ofK andN . The resulting
collections will not only overfit, but will be very difficult to interpret.

• K andN are fixed and non-adaptive.
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In principle, a better algorithm would search over values ofK andN with a bias towards smaller
and fewer models, allowing for higher test-set accuracy andeasier interpretation of models. It would
also do this in a way that would allow the algorithm to incrementally find better local maxima. One
such algorithm isStepwise-HMM-Cluster, which is toHMM-Clusterwhat stepwise regression is to
normal regression. LetNew-HMMs(k,n) be shorthand for a function that returnsk new HMMs with
n states each.

Input: sequence setQ,student setS, student learning gainsG
Output: collectionC
iterationt = 0;
modelsK = 2;
statesN = 2;
collectionC0 = New-HMMs(K,N );
while termination criteria not satisfieddo

iterationt = t + 1;
relearnCt−1 = HMM-Cluster(Q,K,Ct−1);
create partition setsP s

k , 0 ≤ k < K, 0 ≤ s < S;
foreach sequenceqi ∈ Q do

find the best modelk = arg maxk l(qi|M
t−1
k );

let si ∈ S bet the student acting in sequenceqi;
assign sequenceqi to partitionP s

k ;
end
significant modelsR = Regression(G,[P0,. . . ,PK ]);
foreach M t−1

k ∈ Ct−1 do
if M t−1

k ∈ R then
assignM t−1

k to Ct;
end

end
if model count criteria satisfiedthen

K = K + 1;
end
if state count criteria satisfiedthen

N = N + 1;
end
Ct = Ct∪ New-HMMs(K − |Ct|,N );

end
returnCt;

Algorithm 2: Stepwise-HMM-Cluster

A critical step inStepwise-HMM-Clusteris the selection of “good models” from a collectionC.
This choice is determined with regression. In this paper, weuse forward stepwise linear regression.
The number of sequences classified by each model for each student is used as the input (along with
the total sequences per students) and the learning gain is used as the output. For example, ifM0 was
the best fitting model on 20 sequences for Student 0 and 10 sequences for Student 1, andM1 was
the best fitting model on 15 sequences for Student 0 and 25 sequences for Student 1, the regression
approximations would be:

G0 ≈ β0 + β1 ∗ 20 + β2 ∗ 10

G1 ≈ β0 + β1 ∗ 15 + β2 ∗ 25

Critically, this selection step allows the incorporation of external (test-score) data to improve the
model. This is a persistent problem in applying machine learning algorithms to educational data
where many data sources, such as the pre-post gain, do not easily factor into off-the-shelf algorithms.
For future work, many other data sources could be added, suchas other student data (e.g. grade-point
average) or some form of researcher labeling.

There are a variety of possible termination criteria forStepwise-HMM-Cluster, and many options for
model count incrementing criteria and state count incrementing criteria. In this paper, we will use the
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τ MAC(Train) MAC(Test) MRC(Train) MRC(Test) Adj-R2(Train) R
2(Test) Adj-R2T(Train) R

2T(Test)
6 0.62 0.73 0.7 0.73 0.29 0.33 0.29 0.33
8 0.66 0.72 0.76 0.67 0.31 0.25 0.35 0.25
10 0.67 0.72 0.75 0.66 0.33 0.29 0.37 0.29

Table 3: Best possible metric scores for 02

simplest choices: given a constant limit on consecutive iterationsι, a constant limit on the number
of modelsκ, and a constant limit on the number of states per modelν, if the overall regression fit
(adjustedR2) does not improve significantly after at leastι consecutive iterations, increment the
number of statesN used byNew-HMMs. If N = ν already, increase the number of allowed states
K and resetN = 2. Terminate the algorithm when there have beenι consecutive non-significant
iterations, but bothK = κ andN = ν.

In general,New-HMMscan generate candidate HMMs using heuristics or through an active learning
paradigm, but for our purposes, candidate HMMs are generated with randomly chosen parameters.
We will use a value ofι = 2, allowing for one extra “bad” result before continuing to the next level
of complexity.

5 Results

There are five metrics we will consider for estimating the quality of a collection:

• Bayesian Information Criterion (BIC)

• Maximum Absolute Correlation (MAC):max0≤k<K ρ(qk, G)

• Maximum Ratio Correlation (MRC):max0≤k<K ρ( qk

(
∑

0≤l<K
ql)

, G)

• (Adjusted-)R2 of a linear regression without total count (R2)

• (Adjusted-)R2 of a linear regression with total count (R2T)

The first metric (BIC) forms a baseline. BIC offers a cheap, off-the-shelf method for controlling for
overfit, but it also has known biases and limitations. However, it is a standard method that still sees
frequent use, and is included here for comparison and as a baseline.

The correlations, MAC and MRC, describe the best predictionof any single HMM in a collection.
They are useful for three reasons. First, it is easier to interpret a single HMM, rather than interpreting
a mathematical function over a set of models (such as with a regression). Second, it is easier to
construct an intervention from only one model at a time. Finally, as will be shown later, in most
cases, two (almost linearly dependent) model-partitions dominate other model-partitions in the same
collection. When two models classify the majority of observed sequences, there is little difference
between the maximum correlation and the bestR2 value. However, MAC and MRC also “cheat”.
While they are ostensibly based on the correlation of only one HMM with learning gain, that one
HMM is part of a greater collection. It classifies a subset of sequences because other HMMs classify
some sequences better; without the other models, even a high-correlating HMM is useless as its
partition would contain all observed sequences. The general interpretation of these collections will
be that two models are usually the “best” classifiers, but that other models serve to remove specific,
non-useful sequence types from those models’ partitions.

R2 andR2T are the metrics that best match the construction process for collections inStepwise-
HMM-Cluster. Linear regression is the simplest method of incorporatinginformation from all mod-
els in a collection into a single prediction. In general,R2T will provide the best fit on training data,
in part becauseStepwise-HMM-ClusterusesR2T to select optimal collections.R2 andR2T are
adjusted for the number of parameters when reported on training data, but are not adjusted when
reported on test data. In general, the adjustment will not benoted here after, except in table column
headers. Instead, the difference will be indicated byR2(Train) versusR2(Test), and similarly for
R2T.

Table 3 is taken from the 02 data and details the maximum values for each gain metric across
different values of the time thresholdτ , for both the training data and withheld (20%) test data.
Each row represents one run ofStepwise-HMM-Clusterat a fixed value ofτ .
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τ Models Max States MAC(Train) MAC(Test) MRC(Train) MRC(Test) Adj-R2(Train) R
2(Test) Adj-R2T(Train) R

2T(Test)
6 5 3 0.61 0.58 0.7 0.71 0.29 0.24 0.29 0.24
8 5 4 0.58 0.51 0.73 0.59 0.31 0.18 0.31 0.11
10 4 4 0.57 0.54 0.71 0.53 0.325 0.23 0.3125 0.25

Table 4: Best collections for 02, chosen byR2(Train)

Think-
and-Try

Quick-
Change

G T D R
1 99 0 0

G T D R
100 0 0 0

42%

42%

58% 58%

Figure 1: Dominant model forτ = 6, 02 data

The primary purpose of Table 3 is to show the optimal, best-case metrics, especially forR2(Test)
andR2T(Test). In practice, we have to choose a single collection for future predictive purposes,
and cannot select using our test measure. However, the tableshows our optimal test-set result, if we
could choose perfectly, is about 0.33.

Table 4, also taken from 02 data, shows the results from choosing the “best” collections, i.e. the
collection, per choice ofτ , with the highest adjusted R2(Train) score. It also shows the number of
models in the best collection and the maximum number of states per model in that collection. The
R2(Test) andR2T(Test) columns are particularly important as they represent test-set validity. For
τ = 6 andτ = 8, theR2(Test) results represent at least 80% of the best possible test-set prediction.

Additionally, whereR2(Train) andR2T(Train) are equal, there was no significant improvement from
adding the total count to the stepwise regression. The tableshows that, for the 02 data, this is usually
the case. However, whenτ = 10, R2(Train) andR2T(Train) are not identical. From empirical tests,
it is generally true that on the 02 data, selecting the best collection withR2(Train) is more effective
than selecting withR2T(Train); this will not hold for the 06 data.

The test-setR2 andR2T fits are all reasonable, with fairly predictive models forτ = 6 andτ = 10.
A 0.25R2 value is equivalent to a 0.5 correlation, which is very respectable for predicting overall
unit pre-post learning gain using only logged tutor data. Additionally, this methodology uses no
domain knowledge, which makes the result more impressive and generalizable.

To better understand the results, it’s worth noting that in all three optimal collections shown, there
is a single dominant HMM that classifies at least 40% of the sequences and has a 0.5 or better
correlation with learning gain (when computed on the training data). In all three collections, the
model generates predominantly Tries and Guesses. Shown below are two examples of dominant
HMMs for τ = 6 andτ = 8. The emissions are shown as a table of probabilities, where each
heading corresponds to an action symbol, e.g. T for Try.

In both cases, the models emit Tries and Guesses with high probability and emits both symbols
equally often (over the course of many sequences). One possible explanation is that these models
actually select short sequences where the student already knows the answer and thus, where they
can solve the step in one try. This would indicate that the student has learned the material. However,
a quick correlation between the frequency of first-try-correct sequences and learning gain nets a
−0.24 correlation. Instead, an alternative interpretation of these models is that they represent a
persistence-trait. Students who attempt to solve repeatedly are more likely to learn the material than
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Persistent
Attempts

Vestigial
State

G T D R
40 60 0 0

G T D R
9 9 38 44

16%

99% 84%

Figure 2: Dominant model forτ = 8, 02 data

Read-
and-Try

Systematic
Guessing

G T D R
10 90 0 0

G T D R
99 0 1 0

79%

16%

15% 82%

Figure 3: Try-Guess model forτ = 6, 02 data

those that rely on hints. This is borne out by the duration-agnostic nature of the model, which emits
both Tries and Guesses, as well as the lack of hints as a probable emission.

However, this raises a conflict between the results and common sense. The models shown in Figure
1 and Figure 2 have a high probability of emitting a sequence of type TGGGGG, i.e. a single Try
followed by many Guesses. This is, in the educational literature, considered a very poor learning be-
havior. Intuitively, it represents a failed attempt to solve followed by repeated, unthinking guessing.
This disagreement can be resolved by noting that no single model in any collection can be inter-
preted alone. Each model exists only as part of the entire collection, and as such, other models in
the collection can remove specific degenerate sequences. Take theτ = 6 collection as an example.
It contains a model, shown below, that has a high probabilityof emitting Try-Guess type sequences.

The general interpretation of these results is that students learn more when using persistence-type
strategies, so long as they don’t just guess repeatedly. Interestingly, this is largely independent of
the choice of thresholdτ . This suggests that, at least for this range ofτ and for persistent-type
strategies, the duration is not relevantso long asstudents do not engage in repeated guessing. This
issue will be further addressed in the Conclusions section.

It’s possible, however, that selecting with a different metric, such as BIC, would yield better col-
lections. Figure 4 shows the BIC scores for collections in the 02 data forτ = 6, plotted against
the Adjusted-R2(Train) andR2(Test) metrics. Figure 4 clearly shows that the BIC score hasa
non-linear relationship with learning gain prediction, onboth training and test data, and that BIC
is a poor metric for choosing collections of HMMs. There may exist better metrics than BIC or
R2(Train) for this task, but it’s clear thatR2(Train)’s success is non-trivial.
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Figure 4: BIC scores versusR2(Train) andR2(Test),τ = 6, 02 data

τ Models Max States Adj-R2(Train) R
2(Test) Adj-R2T(Train) R

2T(Test)
6 3 8 0.26 0.26 0.35 0.26
8 3 5 0.18 0.19 0.28 0.22
10 6 5 0.44 0.19 0.49 0.17

Table 5: Best collections for 06, chosen byR2T(Train)

Still, this result may be data-set dependent, so an experiment on a second data set is essential. For
this, there is the 06 data, which, compared to the 02 data, hasdifferent students in different class-
rooms using a different version of the Geometry Cognitive Tutor with different pre-post tests. It’s
generally a “harder” data set due to noise in the tests, fewersequences, and shorter sequences. Un-
fortunately, as a result, a direct application of the above method is ineffective: if the best collections
are chosen using theR2(Train) metric, none of them have decent test-set results. In fact, none of the
top 5R2(Train) collections for each choice ofτ have test-set performance on par with the 02 data
results.

Practically, there are reasons to suspectR2T(Train) is a better metric for the 06 data, regardless of
the test-set performance. There is more variation in the number of sequences between students in the
06 data than in the 02 data, which suggests a greater importance for the total number of sequences in
any regression. Unfortunately, at first glance, selecting by R2T(Train) does not improve results. The
top collections still have poor test-set performance, in part because they have 7 or 8 models apiece.
However, within the top 3 collections for each choice ofτ , there is a collection with a nearly0.2 R2

score on test-data. These collections all have one thing in common: fewer models. They are shown
in Table 5.

Think-
and-Try

Quick-
Change

G T D R
1 68 0 31

G T D R
26 70 2 2

92%

12%

8% 88%

Figure 5: Dominant model forτ = 6, 06 data
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For τ = 6 and τ = 8, the otherR2T(Train) collections have at least 7 models, so if a stricter
complexity penalty was used, it would likely select the 3-model collections. Forτ = 10, this is not
as clearly evident. However, putting aside the choice of collection, these best collections exhibit the
same overall form as was seen in the 02 collections. For example, the dominant model forτ = 6 is
shown in Figure 5. The interpretation of this model is the same as the models from Figure 1 and
Figure 2, namely that of persistence. The presence of this model in the best collections across data
sets and values ofτ is highly suggestive that persistent-attempts is a very important strategy.

In general, across all collections shown, hint-heavy strategies are negatively associated with learn-
ing. However, this should not be interpreted too broadly. Many of the more complex collections (4
or 5 models) contain a “noise” model which generates most possible sequences with nearly uniform
probability. Thus, the hint-heavy strategies are actuallyvery focused on specific types of hint re-
quests, usually Drill requests. Some positive-learning models involve hints as well. For example, in
Figure 5, there is actually a 30% chance of generating a Reason action as the first action, before a
series of attempts.

6 Conclusions

Using a traditional HMM clustering algorithm with fixed values ofK, the number of models, and
N , the number of states per model, it is possible to find collections of HMMs that predict learning.
These models not only predict learning, but because the HMMsare relatively small, they are human-
interpretable as classes of student strategies. However, this basic learning algorithm requires many
random restarts, and it’s unclear how to prevent the algorithm from “fishing” for results and thus
overfitting.

An alternative approach is to iteratively increase the values ofK andN , keeping at each iteration an
optimal collection of HMMs from prior iterations. This approach, calledStepwise-HMM-Cluster, re-
quires fewer clusterings to converge to a highly predictivemodel. Further, it avoids pre-hoc choices
for K andN , biases strongly towards smaller models, provides better test-set predictions, and in-
corporates external measures of learning gain.

We showed that usingStepwise-HMM-Clusterfound collections with high training-set prediction
accuracy, even after adjusting for the number of models in a collection. Further, for the 02 data,
withholding part of the data as a test-set still resulted in accurate predictions, on the order of a 0.5
correlation. For the other data, a more heavily penalized selection criterion would select collections
with similar correlations. This algorithm satisfies the primary goals of an educational data mining
method: it produces interpretable models, provides good fits across data sets, and not only fits the
tutor data, but predicts actual learning outcomes.

Additionally, generalization from a learning sciences perspective is not a simple matter of successful
predictions on test data: it requires the production of general learning principles that can be applied
independently of any given parametric model.Stepwise-HMM-Clusterproduced such a general
principle. Our results provide a strong argument that hint-scaffolding as it is presently used is not
actually very effective and that most learning results frompersistent attempts to solve. This suggests
a new paradigm for tutoring system design that emphasizes attempts and provides hints or worked
examples only when strictly necessary to keep the student advancing in the curriculum.

There are several directions for future work. First, prior research has shown that spectral cluster-
ing of HMMs tends to outperform E-M clustering of HMMs. Spectral clustering had an additional
advantage of returning only a single result. However, it is not clear how to constrain spectral cluster-
ing methods to produce interpretable models, or how to choose kernels appropriate for educational
data. Second, there is room inStepwise-HMM-Clusterto incorporate additional data, whether it
be student-level data or expert background knowledge. It isunclear which data sources are useful.
Second, forStepwise-HMM-Cluster, the choice ofτ is a difficult one. A more principled method
for choosing the threshold value would be useful, but more importantly, an understanding of the
role of time in student-tutor action sequences would be invaluable. For example, it’s possible that
there are three types of actions (“Fast”,“Medium”, and “Slow”), or that there are different opti-
mal thresholds for different types of actions. One approachto resolving this question would be to
learn models that use continuous distributions for emitting durations and to use those distributions
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to set the thresholds. Thresholding the duration is still essential in the long-term to produce general
learning principles.

There are also questions of generalization. First, does this method or do these models generate to
other domains? Can a single collection be learned such that it can be used (perhaps after some data
preprocessing) to predict learning in other data sets? And can the principle of persistence be applied
to either future tutor designs or to the creation of educational interventions such that there is an
improvement in actual student learning?
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