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ABSTRACT
Motivation: Time series expression experiments are used to
study a wide range of biological systems. More than 80% of
all time series expression datasets are short (8 time points or
fewer). These datasets present unique challenges. Due to the
large number of genes profiled (often tens of thousands) and
the small number of time points many patterns are expected
to arise at random. Most clustering algorithms are unable to
distinguish between real and random patterns.
Results: We present an algorithm specifically designed for
clustering short time series expression data. Our algorithm
works by assigning genes to a pre-defined set of model profiles
that capture the potentialdistinct patterns that can be expected
from the experiment. We discuss how to obtain such a set of
profiles and how to determine the significance of each of these
profiles. Significant profiles are retained for further analysis
and can be combined to form clusters. We tested our method
on both simulated and real biological data. Using immune
response data we show that our algorithm can correctly detect
the temporal profile of relevant functionalcategories. Using GO
analysis we show that our algorithm outperforms both general
clustering algorithms and algorithms designed specifically for
clustering time series gene expression data.
Availability: Information on obtaining a Java implementation
with a Graphical User Interface (GUI) is available from
http://www.cs.cmu.edu/∼jernst/st/.
Contact: jernst@cs.cmu.edu

1 INTRODUCTION
Time series gene expression experiments are an increasin-
gly popular method for studying a wide range of biological
processes. Examples include response to temperature chan-
ges and other stress conditions [7], immune response [9],
developmental studies [1], and various systems in the cell [20].

While there have been time series experiments with as many
as 80 time points [1], almost all time series are much shor-
ter. To investigate the frequency of time series data and the
distribution of their length we have examined the Stanford
Microarray Database (SMD) [8]. While SMD contains only

experiments carried out in Stanford (a small part of the total
published microarray datasets), we believe that it is represen-
tative of the distribution of microarray datasets. As of June
2004, SMD contained microarray data related to approxima-
tely 170 published papers. Approximately 30 percent of these
papers contained original microarray time series data with
three or more time points1. Many of these papers contain mul-
tiple time series datasets. In total, SMD contained data from
270 distinct time series experiments with three or more time
points. In Figure 1 we present the distribution of the number
of time points in time series data in SMD. As the figure indi-
cates, while some of the time series are long most are very
short. In fact, over 80% of all time series datasets contain 8
points or fewer.

Fig. 1. Distribution of lengths of times series in the Stanford
Microarray Database as of June 2004

There are a number of reasons why short time series data-
sets are so common. Time series experiments require multiple
arrays (and in many cases each point is repeated at least once)
making them very expensive. While microarray technology
have greatly improved over the last five years, its cost is still
high at around $300-1000 per microarray which is a limiting
factor for many researchers. Even if prices go down short time

1 Some of the papers in SMD do not present original data and so the
percentage of time series among new expression dataset is probably larger.
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series experiments would remain prevalent since in many stu-
dies it is prohibitive to obtain large quantities of biological
material. As an example consider a clinical study in which
blood needs to be drawn from patients at various points in
time.

Due to the large number of genes that are being profiled,
most papers presenting short time series datasets use one of
several clustering methods to analyze their data. Hierarchical
clustering [5] along with other standard clustering methods
(such as k-means and self-organizing maps [21]) are often
used for this task. While these clustering algorithms yiel-
ded many biological insights, they are not designed for time
series data. Specifically, all these methods assume that data at
each time point is collected independently of each other, igno-
ring the sequential nature of time series data. More recently,
a number of clustering algorithms specifically designed for
time series expression data were suggested. These algorithms
include clustering based on the dynamics of the expression
patterns [17], clustering using the continuous representation
of the profile [2], and clustering using a Hidden Markov
Model [18]. While these algorithms work well for relatively
long time series dataset (10 points or more) they are not appro-
priate for shorter time series. As we discuss in the next section
(see also Results), these algorithms will overfit the data when
the number of time points is small. In addition, when ana-
lyzing short time series datasets with thousands (or tens of
thousands) of genes, many patterns can be expected to appear
at random. Due to noise and the small number of points for
each gene, some of these patterns will be shared by many
genes. Most clustering algorithms cannot distinguish between
patterns that occur because of random chance and clusters that
represent a real response to the biological experiment.

In this paper we present an algorithm designed specifically
for short time series datasets. Our algorithm starts by selec-
ting a set of potential expression profiles. These set of profiles
cover the entire space of possible expression profiles that can
be generated by the genes in the experiment and each repres-
ents a unique temporal expression pattern. Because we are
dealing with a time series experiment, and because it does not
contain many points, a relatively small set of profiles can be
defined for such data. Next, each gene is assigned to one of
the profiles, and the enrichment of genes in each of the profi-
les is computed to determine profile significance. Significant
profiles can either be analyzed independently or they can be
grouped into larger clusters (based on noise estimates from
the data). The resulting profiles or clusters of profiles are then
analyzed using GO annotations to determine their biological
function.

1.1 Related work
As mentioned above, there are many general clustering algo-
rithms that have been applied to gene expression data (see [16]
for a review). However, these algorithms do not take into

account the sequential nature of time series expression data
and thus are less appropriate for such data.

This observation has led a number of researchers to investi-
gate methods of analysis specifically designed for time series
data. For instance Ramoni et al [17] suggests clustering genes
based on their dynamics. This method relies on regression and
groups together genes whose dynamics can be expressed with
roughly the same auto-regressive equation. While this method
works well for long time series, it is not appropriate for short
ones. Even when using only two regression parameters (the
minimum required to distinguish between up and down trend)
a five time points expression experiment can only use the last
three time points (the first two cannot be regressed). This may
lead to overfitting, and also results in poor cluster separa-
tion as we show in the Results section. Bar-Joseph et al [2]
presented a clustering algorithm that uses splines to cluster
the continuous representation of time series expression data.
Again, this algorithm is not appropriate for short time series.
Even when only two spline segments are used, this algorithm
requires the estimation of five parameters for each gene (and a
few other class related parameters). This will clearly overfit if
the dataset contain only a small number of points. Schliep et
al [18] suggests clustering genes based on a mixture of Hidden
Markov Models (HMM). In an EM style algorithm genes are
associated with the HMM most likely to have generated their
time courses, then the parameters of the HMMs are estima-
ted based on the genes associated with them. This algorithm
requires that the number of time points be much larger than
the number of states (or nodes in each Markov chain). Thus,
while this algorithm works well for long time series datasets
it is not appropriate for short ones.

Pre-defined profiles have been used in the past to fit expres-
sion profiles. For example, Zhao et al [23] and Lu et al [12]
have used sinusoids to identify cycling yeast genes. However,
unlike our method these profiles require the a-priori know-
ledge of the shape of the curve they wish to fit. In most cases,
such knowledge is not available. Möller-Levet et al [14] pre-
sent a method in which a comprehensive set of profiles is
defined. Using these profiles genes are clustered by assigning
them to matching profiles. Unlike our method, their algo-
rithm does not select a subset of the potential profiles and so
the number of profiles grows exponentially in the number of
time points. Thus, their algorithm is only appropriate for very
short time series. In addition, their method cannot differen-
tiate between patterns arising from random noise and patterns
representing biological response. Thus, many of the resulting
profiles do not represent true biological response. Peddada et
al [15] suggests a method to specify expression profiles based
on inequality constraints. Genes are assigned to the profile for
which they best match as determined by a statistical proce-
dure. Unlike our method, their algorithm requires the user to
specify the set of profiles in which she is interested. In addi-
tion, their method requires several repeats. Such large number
of repeats are usually not obtained in time series experiments.
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The method presented by Hooen et al [3] fits linear splines
when few time points and several repeats are available. The
focus of their paper is different than ours, as they are interested
in leveraging the statistical power of having several repeats to
better estimate the profile of a specific gene and to determine
if the gene is differentially expressed. In contrast we focus
on clustering, and our method can work even if no repeats are
available by leveraging the statistical power obtained from the
large number of genes being profiled simultaneously.

2 IDENTIFYING SIGNIFICANT EXPRESSION
PATTERNS

Our algorithm starts by selecting a set of potential profiles.
Next, genes are assigned to the profile that best represents
them among the pre-selected profiles. We first discuss how to
chose a representative set of profiles.Next, we discuss how we
assign genes to profiles and how we determine the significance
of each of the profiles, and then finally how to group them.

2.1 Selecting model profiles
As discussed in the introduction we are interested in selecting
a set of model expression profiles all of which are distinct
from one another, but representative of any expression profile
we would likely see. Here we assume that the raw expression
values are converted into log ratios where the ratios are w.r.t.
the expression of the first time point. The first value of the
series after transformation will thus always be 0. To define
a set of model profiles the user defines a parameter c that
controls the amount of change a gene can exhibit between
successive time points. For example, if c = 2 then between
successive time points a gene can go up either one or two units,
stay the same, or go down one or two units. Note that because
our method relies on correlation (see below) ’one unit’ may
be defined differently for different genes. For n time points,
this strategy results in (2c + 1)n−1 distinct profiles. Note
that this method takes advantage of both, the fact that we are
dealing with a time series (resulting in a limited set of values
at the beginning compared to the end) and the fact that they
are short (and so n is small). For example, 5 time points and
c = 1 would result in 34 = 81 model profiles. Since we are
dealing with thousands of genes, many genes will be assigned
to each of the 81 profiles allowing us to identify the significant
profiles in this experiment.

While the above method generates a manageable number
of profiles for short time series when c = 1, the number of
profiles grows as a high order polynomial in c. For example,
for 6 time points and c = 2 this method results in 55 = 3125
model profiles which are too much for any user to view, and
are also likely to be very sparsely populated. In such cases we
are interested in selecting a (manageable) subset of the pro-
files. Assume we are interested in m representative profiles.
There are a number of ways to select such a subset. Since

the major purpose of the expression experiment is to iden-
tify distinct patterns of gene expression (which are likely to
correspond to different functional categories), we would like
to retain a distinct set of profiles. Computationally speaking,
let P represent the (2c + 1)n−1 set of possible profiles. We
would like to select a set R ⊂ P with m profiles (|R| = m)
such that the minimum distance between any two profiles in
R is maximized. Such a set will guarantee that the profiles
retained from P are as distinct as possible from each other.
This requirement can be formalized by selecting a subset R
which maximizes the following function:

maxR⊂P,|R|=mminp1,p2∈Rd(p1, p2) (1)

where d is a distance metric.
For a set R let b(R) = minp1,p2∈Rd(p1, p2). That is, b(R)

is the minimal distance between profiles in R, which is the
quantity we wish to maximize. Let R′ be the set of profiles
that maximizes Equation 1. Thus, b(R′) is the optimal value
we can achieve. Unfortunately, as we prove on the supporting
website [6], finding such a set R′ that maximizes this function
is NP-Hard. Moreover, an approximation that guarantees a
solution that is better than b(R′)/2 is also NP-Hard. Both
proofs rely on a reduction from the maximal independence
set problem.

Thus, unless P = NP , the best polynomial algorithm for
this problem can only guarantee a set R which achieves a
value of b(R′)/2. We now present a greedy algorithm that is
guaranteed to find such a set. That is, our algorithm finds a set
of profiles R, with b(R) ≥ b(R′)/2. Our algorithm (presented
in Figure 2) starts with one of the two types of extreme profiles
(going down at each time point). Let R be the set of profiles
selected so far. The next profile added to R is the profile p that
maximizes the following equation:

maxp∈(P\R)minp1∈Rd(p, p1) (2)

that is, in each iteration we select the profile that is the furthest
from all profiles selected so far (R). This selection is repeated
until m profiles have been selected and the resulting set is
returned. The top image of Figure 4 illustrates the profiles
selected when m = 50 and c = 2.

The following theorem proves our claim about the optima-
lity of this algorithm:

THEOREM 2.1. Let d be a distance metric. Let R′ ⊂ P be
the set of profiles that maximizes Equation (1). Let R ⊂ P
be the set of profiles returned by our algorithm, then b(R) ≥
b(R′)

2 .

This theorem is proved by considering two cases regarding
the relationship between the set of profiles identified by the
our algorithm (R) and the optimal set (R′). For both cases we
can show that there exists a profile p ∈ R that is at a distance
at most b(R) from two different profiles from R′. Thus, we
can use the triangle inequality to show that b(R′) is at most
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procedure SelectVectorsMaxMinDist(d,P ,m)
let p1 be the profile that always goes down one unit between

time points
R = {p1}; (? The set of selected vectors ?)
L = P \ {p1};
for i = 2 to m do

let p ∈ L be the profile that maximizes:
minp1∈Rd(p, p1);

R = R ∪ {p}; L = L \ {p};
end for;
return R;

Fig. 2. Greedy approximation algorithm to choose a set of m distinct
profiles

twice b(R). A formal proof of this theorem can be found in
the Appendix.

The above algorithm performsm iterations and each of these
takes at most m(2c + 1)n−1 time for a total running time of
O(m2(2c + 1)n−1). Since m is small (m should be at most
100 in order to be manageable), the total running time of this
algorithm is small for short time series datasets (small n).

It is interesting to briefly discuss a related problem known
as the k-centers problem [10] . In our notations, the k-centers
problem tries to find a group R that minimizes the following
equation:

minR⊂P,|R|=kmaxp1∈P\R,p2∈Rd(p1, p2) (3)

In other words, we are looking for a subset R of size k such
that the maximum distance from points not in R to points in
R is minimized. The k-centers problem tries to select centers
that are the best representatives for the group while our goal is
to find the most distinct profiles. While in general an optimal
solution to one of these problems is not necessarily an optimal
solution to the other, the algorithm we presented above is also
known to be the best possible approximation algorithm for k-
centers (the proof is obviously different). Thus, this algorithm
provides the best of both worlds: a distinct subset that is also
a good representation of the initial set of profiles P .

2.2 Identifying significant model profiles
Given a set of M of model profiles, and a set of genes G, each
gene g ∈ G is assigned to a model expression profile mi ∈ M
such that d(eg, mi) is the minimum over all m ∈ M . Here
eg is the temporal expression profile for gene g. If the above
distance is minimized by h > 1 model profiles (i.e. we have
ties) then we assign g to all of these profiles, but weight the
assignment in the counts as 1/h. We count the number of
genes assigned to each model profile and denote this number
for profile mi by t(mi).

Next, we would like to identify model profiles that are
significantly enriched for genes in our experiment. Our null

hypothesis is that the data is memoryless. That is, the proba-
bility of observing a value at any time point is independent of
past and future values. Thus, according to the null hypothe-
sis, any profile we observe is a result of random fluctuation in
the measured values for genes assigned to that profile. Model
profiles that represent true biological function deviate signifi-
cantly from the null hypothesis since many more genes than
expected by random chance are assigned to them.

Determining a parametric model for our null hypothesis
is complicated by the many noise factors that affect gene
expression measurements. Instead, we follow many previous
methods for static gene expression analysis [4, 22] and use
a permutation based test. In our case, permutation is used to
quantify the expected number of genes that would have been
assigned to each model profile if the data was generated at
random. Note that under the null hypothesis, the order of the
observed values is random (as each point is independent of
any other point) and thus permutations are expected to result
in profiles that are similar to the null distribution.

Since there are n time points, each gene has n! possible per-
mutations, and all of these can be computed for small values
of n. For each possible permutation we assign genes to their
closest model profile. Let sj

i be the number of genes assigned
to model profile i in permutation j (j is one of the n! possible
permutations). We set Si =

∑
j sj

i . Then, Ei = Si/(n!) is
the expected number of genes for each profile model if the
data was indeed generated according to the null hypothesis.
Note that different model profiles may have different num-
ber of expected genes and so in general Ei 6= |G|/m (see
Results).

Since each gene is assigned to one of the profiles, we can
assume that the number of genes in each profile is distri-
buted as a binomial random variable with parameters |G|
and Ei/|G|. Thus the (uncorrected) p-value of seeing t(mi)
genes assigned to profile pi is P (X ≥ t(mi)) where X ∼
Bin(|G|, Ei/|G|). If we were testing just one model expres-
sion profile for significance then we could consider the number
of genes assigned to pi to be statistically significant at the α
significance level if P (X ≥ t(mi)) < α. However since we
are testing m model profiles for significance, we need to cor-
rect for the multiple comparisons. We thus apply a Bonferroni
correction and consider the number of genes assigned to pi

to be statistically significant if P (X ≥ t(mi)) < α/m. The
running time of the permutation test method is |G|n!m which
for small m and n is at most quadratic in the number of genes.

2.3 Correlation Coefficient
While the above algorithm and approximation guarantees
works with any distance metric, in this paper we focus on
the use of the correlation coefficient ρ(x, y). The correlation
coefficient has enjoyed great success in computational bio-
logy, especially when used in a clustering algorithm [5]. An
advantage of the correlation coefficient for our method is that
it can group together genes with similar expression profiles
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even if their units of change are different. However, while the
correlation coefficient is useful, it can take negative values
and does not satisfy the triangle inequality and thus is not a
metric.

Instead we use the value gm(x, y) = 1−ρ(x, y). This func-
tion while always greater or equal to 0, is still not a metric since
it does not satisfy the triangle inequality. However, gm(x, y)
does satisfy a generalized version of the triangle inequality,
specifically, we prove on the supporting website [6] that:

LEMMA 2.1. gm(x, z) ≤ 2(gm(x, y) + gm(y, z)).

We further remark that the proof of the lemma actually gives
an even tighter upper bound on gm(x, z) as a function of the
specific values of gm(x, y) and gm(y, z). Note that the above
lemma proves that the correlation coefficient is a transitive
measure. This might serve as a justification and motivation
for the success of the correlation coefficient as it shows that
when using the correlation coefficient two highly dissimilar
profiles cannot both be very similar to a third profile 2.

2.4 Grouping Significant Profiles
The assignment of genes to model profiles is deterministic.
However, due to noise, it is impossible to rule out close profiles
(even if not the closest) as being the true profile for individual
genes. If we have a measurement of the noise (for example
from repeat experiments) it is possible to determine a distance
threshold δ below which two model profiles are considered
similar (the difference between genes assigned to these two
may be attributed to noise). Such model profiles represent
similar enough expression patterns and thus should be grouped
together.

In order to determine which model profiles should be grou-
ped together we transform this problem into a graph theoretic
problem. We define the graph (V, E) where V is the set of
significant model profiles, and E is the set of edges. Two pro-
files v1, v2 ∈ V are connected with an edge iff d(v1, v2) ≤ δ.
Cliques in this graph correspond to sets of significant profiles
which are all similar to one another. There are many ways to
partition a graph into a set of cliques. Here we are interested in
identifying large cliques of profiles which are all very similar
to each other. This leads naturally to a greedy algorithm to
partition the graph into cliques and thus to group significant
profiles.

The greedy algorithm we use grows a clusterCi around each
statistically significant profile pi. Initially, Ci = {pi}. Next,
we look for a profile pj such that pj is the closest profile to pi

that is not already included in Ci. If d(pj , pk) ≤ δ for all profi-
les pk ∈ Ci we add pj to Ci and repeat this process, otherwise
we stop and declare Ci as the cluster for pi. After obtaining

2 Note that since gm does not fully satisfy the triangle inequality, the factor
1

2
guarantee of our profile selection algorithm does not hold. However, we

can still obtain a factor 1

4
guarantee using the above algorithm as we show

on the supporting website [6].

clusters for all significant profiles, we select the cluster with
the largest number of genes (by counting the number of genes
in each of the profiles that are included in this cluster), remove
all profiles in that cluster and repeat the above process. The
algorithm terminates when all profiles have been assigned to
clusters. The running time of this algorithm is O(m′4), where
m′ is the number of significant profiles, which is generally
small.

3 RESULTS
We present results for simulated and biological data. Our
simulation results illustrate empirically that our method per-
forms consistent with theoretical expectations. We then pre-
sent results for using our algorithm to study the immune
response system in humans. For this data we have also compa-
red our results with clustering algorithms that have been used
in the past to cluster short time series expression data.
Simulated Results
We generated a data set simulating 5,000 genes with five
time points. The raw expression value at each time point was
randomly drawn from a Uniform[10,100] distribution (other
distributions yielded similar results). Each value was drawn
independently of all other values, and the distribution was
identical for all time points. Next we transformed this data
to a log ratio representation. We applied our algorithm using
50 model profiles with a maximum unit change between time
points of two. As expected, our algorithm determined that
none of the profiles had a significant number of genes.Figure 3
(top) plots the number of genes assigned to each profile against
the number of genes expected. The region above the diagonal
line corresponds to gene assignments levels that would be sta-
tistically significant at an α = 0.05 Bonferroni corrected level
or equivalently at an α = 0.001 uncorrected level. Note that if
we assume that the number of expected genes for each profile
is the same (5000/50 = 100 in our case) then anything above
the horizontal line would be considered statistically signifi-
cant. The distribution of profiles on the graph illustrates that
different temporal expression profiles are more likely than
others to occur by random chance, something which standard
clustering algorithms do not take into account.

In our second experiment we selected three profiles as
appears in Figure 3 (bottom) and assigned 50 genes (1%) to
each of these profiles (the other 4850 genes were generated
as described above). Log ratio values for genes assigned to a
profile were set to a noisy version of the values of that profile
by adding random noise to every time point of these genes (see
website [6] for details). Figure 3 (middle) shows the results
obtained for this data. The only three profiles which lie above
the diagonal line are those for which the genes were planted.
Thus, all three selected profiles were correctly recovered by
our algorithm, and no other profile was determined to be signi-
ficant. Note that the significant profiles had roughly half the
number of genes assigned than a number of non-significant
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Fig. 3. Simulated data results. (top) Expected vs. assigned number
of genes for our first experiment. Points above the diagonal line
correspond to profiles determined by our algorithm to be significantly
enriched. The horizontal line corresponds to the same significance
level if we assume that the number of expected genes for all profiles
is the same. As can be seen our algorithm correctly determined that
no profile is significantly enriched for genes, even though a number
of profiles are above the horizontal line. (middle) Similar plot for
our second experiment. Our algorithm correctly identified all three
planted profiles, even though each was planted with only 1% of the
genes. (bottom) The three significant profiles found out of the set of
fifty considered. The fifty profiles considered are the same as appear
in Figure 4.

profiles. Such smaller, but more statistically significant clu-
ster of genes could be overlooked by a traditional clustering
algorithm.
Biological Results
We tested our algorithm on immune response data from Guil-
lemin et al [9]. In the paper the authors used human cDNA
microarrays to study the gene expression program of gastric
AGS cells infected with various strains of Helicobacter pylori.
Helicobacter pylori is one of the most abundant human patho-
genic bacteria. In this paper we will analyze data from the
response of the wildtype G27 strain. We use data obtained
from two replicates on the same biological sample in which
time series data was collected at five time points, 0 hours,
0.5h, 3h, 6h, and 12h.

Fig. 4. Biological data results. (top) A screen shot of the main win-
dow to the software. 50 distinct temporal profiles with a maximum
unit change of two between time points is shown. The shaded profiles
are statistically significant. Profiles of the same shade are grouped
together. The algorithm was able to narrow the 50 initial profiles,
to only 10 which were statistically significant. (bottom) A plot of
the number of genes assigned to each profiles versus the expected
number of genes. The ten above the diagonal line are those which are
considered statistically significant. One of these profiles, profile 14,
lies well below the horizontal line and would not be considered sta-
tistically significant if the number of genes assigned to each profile
was assumed to be the same.

We first selected 2243 genes for further analysis from the
24,192 array probes. Genes were selected based on the agree-
ment between the two repeats and their change at any of the
experiment time points (see website [6] for details). We used
a set of 50 model profiles (using more profiles yielded similar
results, however, we believe that 50 is a manageable number
and so we focus on this set here). For the results discussed
below we generated the model profiles using a value of 2 for
the maximum unit change parameter (c). Additional experi-
ments with c = 1 and c = 3 returned very similar results (see
website [6] for details). Of the 50 model profiles, 10 profiles in
seven clusters were identified as significant. Figure 4 presents
an image and plot of the clusters and profiles. Shaded pro-
files are significant and profiles with the same color belong
to the same cluster. We used a correlation of 0.7 (δ = 0.3)
in our grouping method, where the value of 0.7 was obtai-
ned by using the similarity of the repeat data. Of the seven
cluster of profiles one contained three profiles, one contai-
ned two profiles, and five were single profiles. Four of the
10 significant model profiles were significantly enriched for
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gene ontology (GO) categories (as determined by the hyper-
geometric distribution), two of these profiles were assigned to
the cluster containing three profiles while the others remained
separate. We note that the array contained many un-annotated
genes, which could explain why not all profiles were signifi-
cantly enriched for GO categories. Below we describe some
of the significant profiles, and discuss their relevance to GO
categories for which the profiles were enriched.

Profile 9 (0,−1,−2,−3,−4) (see Figure 5) contained 131
genes that were down regulated during the entire experiment
duration. This profile was significantly enriched for cell cycle
genes (p-value < 10−10). Many of the cycling genes in this
profile are known transcription factors, which could contri-
bute to repression of cell cycle genes, and, ultimately, the
cell cycle [9, 13, 19]. Profile 14 (0,−1, 0, 2, 2), contained
49 genes. This profile is interesting since the raw number of
genes assigned to the profile is not large and thus it could be
missed by a clustering algorithm which ignores the sequential
nature of the time series data. Genes assigned to this profile
went slightly down at the beginning but later were expressed
at high levels. GO analysis indicates that many of these genes
were relevant to cell structure and annotated as belonging to
the categories cytoskeleton (p-value= 9×10−5), extracellular
matrix (9 × 10−4), and membrane (2 × 10−6). Structu-
ral elongation of cells is a known phenotypical response to
pathogens, and thus the enrichment of such genes in up-
regulated expression profile is consistent with this biological
response [9, 11]. Profile 41 contained 86 genes that were
going up during the entire experiment (0, 1, 2, 3, 4). The most
enriched GO category for this profile was response to sti-
mulus (p-value= 2 × 10−5) which contains defense and
immune response genes.Since the experiment involved patho-
gen infection, such a reaction from immune response genes
is to be expected, and many of the un-annotated genes in this
profile might be also related to immune response.

We note that while the biological analysis in [9] was largely
anecdotal (focusing on a few key genes) many of these genes
correspond to the above GO categories or to GO categories
associated with the other significant profiles. Thus our work
contributes a rigorous statistical justification for many of the
observations made in the paper.

We compared our method with both, a general clustering
algorithm (k-means) and an algorithm, designed specifically
for time series data (CAGED) [17]. We did not compare
directly with hierarchical clustering since hierarchical clu-
stering does not give a fixed number of clusters (cutting
hierarchical clustering at a particular level in the tree resul-
ted in few large clusters and many singletons). For k-means
we used the Matlab 6.5 implementation of k-means with the
correlation coefficient as the distance function (similar results
were obtained when using Euclidean distance).Sincek-means
does not assign significance to the clusters it detects we used
two version of k-means for this comparison. In the first version
we clustered the entire set of 2,243 genes with 10 clusters. In

Fig. 5. A cluster from CAGED (top left) containing all Profile 14
(upper right) genes and a substantial majority of Profile 41 (bottom
left) genes, among many other genes. As can be seen, the fact that so
many genes are grouped together masks the presence of significant
profiles identified by our algorithm resulting in low correlation with
the relevant GO categories. Profile 9 is on the bottom right.

the second method we generated 50 clusters and selected the
10 clusters with the most genes for further analysis. We used
the third level of the GO hierarchy to compare our results
with k-means. For each clustering result we computed the
GO enrichment for the selected clusters, and compared them
to the enrichment detected using the profiles algorithm. Six-
teen third level GO categories had a p-value of at least 0.001
in one of the three clustering results. As Figure 6 shows, for
most of the significant GO categories our algorithm identified
a more coherent set of genes (resulting in a lower p-value)
compared with either version of k-means. Some of the most
biologically relevant categories such as cellular physiologi-
cal process, death, membrane, and response to stimulus had
p-values that were orders of magnitude lower using the pro-
files methods when compared with the k-means results. This
is probably because of the inability of k-means to determine
which of the clusters correspond to significant profiles and
which are only the result of random noise.

For CAGED we used the recommended default settings
including a Markov order of 1 except for consistency used
correlation as our distance function (the results were simi-
lar for a Markov order of 2, and with Euclidean distance).
CAGED returned five clusters. Four of the five clusters were
not enriched for any GO category and the fifth was enriched
with categories that are found in the entire set of 2243 genes.
One of the main problems of CAGED was that it grouped too
many genes in one cluster. As can be seen in Figure 5, one
of the CAGED clusters contained genes from both profiles
14 and 41, in addition to many other genes. The large set of
genes masked the significant subsets that were contained in
this profile, resulting in no significant GO category for this

7
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Fig. 6. Comparison of enriched third level GO categories between
our algorithm and k-means. All categories that were enriched on one
of the two algorithms were selected. Y axis - minus log p-value for
GO enrichment using the profiles algorithm. X axis - minus log p-
value for k-means. (top) k-means with 10 clusters (k = 10) (bottom)
k-means with 50 clusters focusing on the 10 most populated clusters.
Points above the center diagonal line represent categories that were
more enriched using the profile algorithm and below the line cate-
gories more enriched using k-means. Points above (below) the light
dashed lines represent differences greater than one order of magni-
tude between the two methods. As can be seen, most categories were
much more enriched using the profiles algorithm. In particular, cate-
gories directly related to the experimental condition such as cellular
physiological process (cell cycle), death, membrane, and response to
stimulus were generally much better detected using our algorithm.

cluster. While CAGED is a very useful algorithm for long
time series datasets, for short ones it seems like it does not
have enough data to further separate the clusters. In contrast,
our algorithm looks at all possible profiles (or a representa-
tive subset of them) allowing it to detect significant expression
profiles even if only a small number of genes are associated
with them.

4 CONCLUSIONS AND FUTURE WORK
Short time series expression datasets present unique challen-
ges due to the large number of genes sampled and the small
number of values for each gene. In this paper we presented
an algorithm which uses a set of model profiles to cluster the
results of these experiments. The model profiles are selected
independently from the data allowing our algorithm to deter-
mine the significance of the different clusters. This is a major
advantage over other clustering algorithm that have been used

for this task in the past since, due to noise and the small number
of points, many patterns can be expected to arise at random.

Using simulated data we have shown that our algorithm can
correctly identify small sets of genes planted in large ran-
dom noise and can also distinguish between true and random
patterns. Using immune response data we have shown that
the patterns returned by our algorithm are in good agreement
with the functional annotations of the associated sets of genes.
Comparison to k-means and CAGED indicated that by focu-
sing on the set of significant profiles our algorithm outperform
these algorithm resulting in a much more coherent set of genes.

There are a number of possible future directions. First, if
either c (the unit change) or n (number of time points) are
large then even the potential set of model profiles can be too
large to work with. In such a case we would like to develop
a sampling strategy to help us first select a smaller set from
which we would later choose the model profiles. It will also
be interesting to extend this work by incorporating other types
of data with the results of this method. For example, it would
be useful to order the temporal profiles and figure out if later
expressed profiles can be explained by binding motifs belon-
ging to a transcription factor which is included in an early
profile.
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APPENDIX
Theorem 2.1 Let d be a distance metric. Let R′ ⊂ P be the
set of profiles that maximizes Equation (1). Let R ⊂ P be the
set of profiles returned by our algorithm, then b(R) ≥ b(R′)

2 .

PROOF. Set b′ = b(R′) (b′ is the optimal distance)
and b = b(R) (b is the distance returned by our algo-
rithm). Let {r′1, r

′
2, ..., r

′
m−1, r

′
m} be the profiles in R′ and

{r1, r2, ..., rm−1, rm} be the profiles in R. Note that for
any profile p ∈ P there exists a profile rj ∈ R such that
d(p, rj) ≤ b. If p is one of the profiles in R then let rj = p,
which gives d(p, rj) = d(rj , rj) = 0 ≤ b. If p /∈ R then
there must be a profile in R with a distance at most b from p
otherwise the greedy algorithm would have selected p from
R instead of rm (we know that the minimum distance b was
achieved by the last profile rm). For each profile in R′ we can
find its closest profile in R. Next, we consider two possible
cases, which are also the only possible cases:
Case 1 - Two different profiles, r′i, r

′
j ∈ R′, are closest to the

same profile rh ∈ R:
We note that d(r′i, rh) ≤ b and d(r′j , rh) ≤ b as men-
tioned above. Using the triangle inequality we get 2b ≥
d(r′i, rh) + d(r′j , rh) ≥ d(r′i, r

′
t) ≥ b′ and thus our solu-

tion is at least half of an optimal solution.
Case 2 - No two vectors in R′ are closest to the same vector
in R:
WLOG let r′m be the vector which is closest to rm (the last
profile added by our algorithm). We next observe that there
must exists i 6= m such that d(r′m, ri) ≤ b. This is so because
if such a profile ri did not exist then the greedy algorithm
would have selected r′m instead of rm. Let r′i be the profile
from R′ closest to ri, then d(r′i, ri) ≤ b since all profiles
are within b of a profile selected by the greedy algorithm. We
thus have 2b ≥ d(r′m, ri)+d(r′i, ri) ≥ d(r′i, r

′
m) ≥ b′ which

again shows that our solution is at least half of an optimal
solution.
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