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Abstract

Dealing with uncertainty in Bayesian Net-
work structures using maximum a posteriori
(MAP) estimation or Bayesian Model Av-
eraging (BMA) is often intractable due to
the superexponential number of possible di-
rected, acyclic graphs. When the prior is
decomposable, two classes of graphs where
efficient learning can take place are tree-
structures, and fixed-orderings with limited
in-degree. We show how MAP estimates
and BMA for selectively conditioned forests
(SCF), a combination of these two classes,
can be computed efficiently for ordered sets of
variables. We apply SCFs to temporal data
to learn Dynamic Bayesian Networks having
an intra-timestep forest and inter-timestep
limited in-degree structure, improving model
accuracy over DBNs without the combination
of structures. We also apply SCFs to Bayes
Net classification to learn selective forest-
augmented Näıve Bayes classifiers. We ar-
gue that the built-in feature selection of selec-
tive augmented Bayes classifiers makes them
preferable to similar non-selective classifiers
based on empirical evidence.

1 Introduction

Bayesian Networks have proven to be useful for mod-
eling relationships between variables. However, opti-
mally and efficiently learning from data which rela-
tionships are important for building accurate models
(i.e. structure learning) is difficult due to the superex-
ponential number of possible graphs and the require-
ment of acyclicity. One common approach to structure
learning is to find the maximum a posteriori (MAP)
estimate for the graph structure of the Bayesian Net-
work. A second approach is to probabilistically aver-

Figure 1: A forest structure (a), a selectively condi-
tioned structure (b), and their combination, a selec-
tively conditioned forest structure (c).

age over all possible structures using Bayesian Model
Averaging (BMA).

In this paper, we provide novel methods for obtaining
the MAP structure estimate and BMA for the class
of structures with ordered sets of fully observed, dis-
cretized variables, where within each set the variables
are connected at most by a tree graph (Figure 1a), and
each variable can have a limited number of parents
from the previous set(s) in the ordering (1b). We call
this class of structures selectively conditioned forests
(SCFs) (1c). We provide an algorithm capable of find-
ing the MAP SCF structure in time that is polynomial
in the number of variables in each set, |V|, and the
amount of training data, |D|, but exponential in k, a
limit on the number of inter-set parents for each node.
The overall runtime of our algorithm is O(|V|k+2|D|).
Additionally, we provide a method for BMA of SCF
structures with run time O(|V|k+2|D| + |V|3).

We were influenced to investigate selectively condi-
tioned forests by our work with temporal data mod-
eling problems. When gathering temporal data it is
often difficult to observe all of the necessary variables
at a high enough temporal granularity to obtain a
true causal model of underlying physical phenomena.



Even if it were possible, different observation granu-
larities between features would result in a very high
order model. Instead, some pairs of variables appear
to have instantaneous correlation within a timestep.
The SCF of a Dynamic Bayesian Network (DBN) con-
tains both sets of inter-timestep and intra-timestep de-
pendencies. The increase in time complexity of find-
ing intra-timestep dependencies in addition to inter-
timestep dependencies is only linear in the number
of variables when learning the MAP structure. We
show that for real datasets, intra-timestep structure
improves model accuracy more than additional inter-
timestep parents even when the intra-timestep vari-
ables are unobserved during inference.

As a second application of our method, we gener-
alize Friedman et al. (1997)’s tree-augmented Näıve
Bayes classifier by employing MAP SCF to learn se-
lective tree-augmented Näıve Bayes (STAN) and se-
lective forest-augmented Näıve Bayes (SFAN) with no
increase in asymptotic time complexity. These gener-
alizations to TAN can reduce model parameterization,
improving classification accuracy by removing unnec-
essary dependencies, such as noisy features. While
selective Näıve Bayes classifiers have been of interest
(Langley and Sage 1994), prior to this work SFAN and
STAN structures were obtained approximately using
heuristics rather than through exact MAP estimation.

The remainder of this paper is organized as follows.
In section 2 we review structure learning and Bayesian
Model Averaging, and relate our work to similar ap-
proaches for dealing with structure uncertainty in
DBNs and augmented Näıve Bayes classifiers. We pro-
vide the algorithm for efficiently learning the MAP
estimate and Bayesian Model Averaging for the SCF
class of structures in sections 3 and 4. In sections
5 and 6 we apply MAP SCF to temporal data and
classification problems to learn SCF DBNs and selec-
tive forest-augmented Näıve Bayes (SFAN) classifiers,
and evaluate the resulting models on real datasets to
illustrate the benefits of intra-temporal dependencies
for temporal modeling and selectivity for classification.
Finally, in section 7 we provide conclusions and future
extensions for this work.

2 Background and Related Work

Bayesian Networks allow for a compact representation
of probability distributions for sets of variables. The
joint probability of all variables factors according to a
directed acyclic graph (DAG) G = (V , E), as follows:

P (X1, ...,Xn|G, Θ) ≡

|V|
∏

i=1

p(Xi|Xπi
, θi)

where the parents of Xi, denoted πi are determined by
G and have values Xπi

, and the conditional probability
for Xi, θi, is determined by the set of parameters Θ.

In many machine learning settings G is unknown and
must be learned from data. A common approach to
structure learning is to employ a prior on graph struc-
tures and parameters, P (G, Θ), that limits complexity
and then use the maximum a posteriori (MAP) esti-
mate for the graph structure.

G∗
MAP = argmax

G

Z

Θ

P (G, Θ|X) dΘ

= argmax
G

Z

Θ

P (X|G, Θ)P (G, Θ) dΘ

= argmax
G

Y

i

P (πi)

Z

θi

P (Xi|Xπi
, θi)P (θi|πi) dθi

= argmax
G

e
P

i LS(Xi|Xπi
,Pθi

)+log P (πi)

= argmax
G

X

i

LS(Xi|Xπi
, Pθi

) + log P (πi) (1)

LS(Xi|Xπi
, Pθi

)≡ log

Z

θi

P (Xi|Xπi
, θi)P (θi|πi) dθi (2)

As shown in Equation 1, the prior is usually chosen so
that the entire function decomposes into the sum of
local score function (LS) evaluations (Equation 2) and
local priors, Pθi

, P (πi). Common priors for Bayesian
Networks with multinomially distributed variables are
the Bayesian Dirichlet (BD), the Bayesian Dirichlet
Equivalent (BDe) (Heckerman et al. 1995), and the
uniform Bayesian Dirichlet Equivalent (BDeu) (Bun-
tine 1991).

For the general class of directed acyclic graphs, finding
the MAP estimate is NP-hard (Chickering 1995) even
with decomposable MAP functions. Two restricted
classes of structures where the MAP estimate can be
found in polynomial time are tree-structures, by reduc-
tion to a maximum spanning tree solution with edges
weighted by mutual information (Chow and Liu 1968),
and fixed-orderings with limited in-degree, by combi-
natorial search (Buntine 1991). In the latter class of
structures, each variable is restricted to have at most
k parents occurring previously to itself in a provided
ordering of all variables. For less restrictive classes
of graphs, heuristic-based edge operations (Heckerman
et al. 1995) are employed to search for good structures
in polynomial time. However, there are no guarantees
that these searches will find the MAP estimate. In con-
trast, we learn the exact MAP estimate of the combi-
nation of tree-structures and fixed-orderings with lim-
ited in-degree in polynomial time.

In Bayesian Model Averaging (BMA), inquiries are
probabilistically averaged over all possible graph struc-
tures and parameters. For example, the probability of
new test data, X̃, can be averaged over all possible



models.

P (X̃|X) =
X

G

Z

Θ

P (X̃|G, Θ)P (G,Θ|X) dΘ

=
X

G

Y

i

Z

θi

P (X̃i|Xπi
, θi)P (πi, θi|X) dθi

=
X

G

Y

i

eLS(X̃i|X̃πi
,Pθ|X)+log P (πi) (3)

For general Bayesian Networks, the superexponen-
tial number of possible structures to consider makes
Bayesian Model Averaging intractable. However, effi-
cient BMA can be employed on structures with fixed-
orderings and limited in-degree (Friedman and Koller
2000), and tree-structures (Meila and Jaakkola 2000,
Cerquides and de Mántaras 2003) where the sufficient
statistics of P (G, Θ|X) can be efficiently computed by
using a decomposable conjugate prior. For Bayesian
Model Averaging of tree-structures, efficient computa-
tion relies on a combinatoric result of graph theory,
the Matrix Tree Theorem (West 2000). We provide a
method to perform Bayesian Model Averaging over the
class of SCFs using a generalization of this theorem.

Temporal datasets represent an important domain
for structure learning. Dynamic Bayesian Networks
(DBNs) are an extension of Bayesian Networks to tem-
poral data of arbitrary length. A DBN consists of a set
of variables repeated over many consecutive timesteps.
Edges in DBNs are generally restricted from being di-
rected backwards in time. The graph structure for
two-slice DBNs consists of a structure for the first
timestep, G0, and a structure repeated for every con-
secutive timestep, G+.

In two-slice DBNs, structure learning has been applied
to learn the initial timestep structure, G0, and the re-
peated structure, G+ (Friedman et al. 1998). The con-
ditional Chow-Liu algorithm (Kirshner et al. 2004) ob-
tains the MAP estimate of the class of structures where
each variable can have one parent from either the same
or the previous timestep in addition to a fixed set of
condition variables. The K2 algorithm (Cooper and
Herskovits 1992) is also employed to learn the struc-
ture for DBNs with a fixed number of parents from the
previous timestep. Conditional Chow-Liu tree struc-
tures and limited inter-timestep parents are both sub-
classes of SCFs, which allow for the combination of
inter-timestep and intra-timestep dependencies to be
learned within Dynamic Bayesian Networks. We show
that this combination of dependencies produces more
accurate models than structures limited exclusively to
inter-timestep or intra-timestep dependencies.

Structure learning has also been employed successfully
to augment Bayes Net classifiers in a way that relaxes
independence assumptions, and Bayesian Model Aver-
aging has been employed to deal with structure uncer-

tainty in small datasets. Friedman et al. (1997) aug-
ment the Näıve Bayes classifier with a tree-structure
connecting the feature variables in addition to edges
between the class and each feature. They call this new
classifier Tree-Augmented Näıve Bayes (TAN) and use
MAP estimation to obtain the structure. They find
that the relaxation of the feature conditional indepen-
dence assumption helps to improve the classification
accuracy on numerous datasets. Selective Näıve Bayes
(Langley and Sage 1994) relaxes the direct dependency
requirement of each feature to the class variable, al-
lowing feature selection. Bayesian Model Averaging
has also been employed for both TAN (Cerquides and
de Mántaras 2003) and selective Näıve Bayes (Dash
and Cooper 2004), resulting in increased accuracy for
small datasets with large amounts of structure uncer-
tainty.

We apply MAP SCF and BMA SCF to Näıve Bayes,
providing further relaxation of the TAN constraints.
The resulting classifier, Selective Forest-Augmented
Näıve Bayes (SFAN), allows features to be intercon-
nected by a forest structure and optionally depen-
dent on the class variable. Heuristic approaches have
been employed to create the same structure by prun-
ing some of the edges from the TAN classifier (Sacha
1999), but our approach is the first to find the opti-
mal MAP estimate or employ BMA for this class of
structures.

3 Learning MAP SCF Structures

The focus of this work is the situation where the vari-
ables X can be divided into two sets St−1 and St where
the variables of St are conditioned on the variables of
St−1. The graph structure, G, can similarly be split
into the edges that are parents of variables in St−1
and St. We denote these two subgraphs as Gt−1 and
Gt. Under the restriction that variables of St−1 cannot
have parents from St, the choice of parents for vari-
ables in St and St−1 are independent since no cycles
can be formed spanning across both sets.

G∗
MAP = argmax

G

log P (St|Gt, St−1) + log P (Gt)

+ log P (St−1|Gt−1) + log P (Gt−1)

= {argmax
Gt

X

Xi∈St

LS(Xi|Xπi
, Pθi

) + log P (πi),

argmax
Gt−1

X

Xi∈St−1

LS(Xi|Xπi
, Pθi

) + log P (πi)}

= {G∗
t,CMAP|St−1

, G∗
t−1,MAP} (4)

The MAP structure, G∗
MAP, can be obtained by com-

bining the MAP structure for Gt−1 and the conditional
MAP structure (CMAP) of Gt given St−1 as shown in
Equation 4. The CMAP only differs from the MAP
estimate in that variables of the CMAP can have par-
ents in the disjoint condition set, St−1, in addition to



parents from within the same set, St.

Selectively conditioned forests (SCFs) impose two ad-
ditional constraints on the CMAP graph structure:

• Variable Xt,i of St has at most k parents from
St−1, which we denote πt−1,i

• Variable Xt,i has at most one parent, πt,i, from St

(i.e. variables of St are interconnected by a forest
structure).

Figure 2: Sets of variables used in the algorithm.

The key observation that allows efficient optimization
is that given πt,i, choosing the inter-set parents, πt−1,i

is completely independent of all other choices of par-
ents for all other variables, and can be chosen greed-
ily by combinatorially evaluating the limited subset of
parent variables in St−1. This observation allows the
optimization to be rewritten as follows:

πt
∗ = argmax

forest πt

max
πt−1

X

i

LS(Xi|Xπi
, Pθ) + P (πi)

= argmax
forest πt

X

i

P (πi) + max
πt−1,i

LS(Xi|Xπi,t
,Xπi,t−1

, Pθ)

(5)

πt−1,i
∗ = argmax

πt−1,i

LS(Xi|Xπ∗
t,i

,Xπt−1,i
, Pθ) + P (πi) (6)

The dynamic algorithm follows from Equations 5 and
6. It presupposes each possible intra-set parent, πt,i,
and finds the best possible set of inter-set parents
(Equation 6) for that parent πt,i (Step 1). We de-
note the combined best parent set of Xi for inter-set
parent πt as πi(πt,i)

∗. The score of these sets, λi(πt,i)
is used to weight the edge from the intra-set parent,
πt,i, to the child, Xi, in a directed graph (Step 2). The
solution for Equation 5 is the maximum directed span-
ning forest (MDSF) of the graph1. The full algorithm
is shown in Table 1. The time-complexity of the algo-
rithm is characterized by the O(|St−1|

k|St|
2|D|) cost

of performing LocalScore calculations.

1Each root in the forest also has a weight that con-
tributes to the total structure score. We reduce to MDST
with an additional vertex weight for the root considered in
the maximization, using a modified version of the Chu-Liu-
Edmonds algorithm (Chu and Liu 1965, Edmonds 1967).

Table 1: LearnSCF CMAP algorithm

LearnSCF(St,St−1)

1. ∀Xi∈St,Xj∈{St,∅}

πi(πt,i)
∗ ← argmax

πi:πi∩St−1⊆{Xj}

LS(Xi|Xπi
, Pθ) + log P (πi)

λi(πt,i)
∗ ← max

πi:πi∩St−1⊆{Xj}
LS(Xi|Xπi

, Pθ) + log P (πi)

where also |πi ∩ St−1| ≤ k

2. Create full directed graph G=(V,E) where V = St,

∀i6=j weight(Ej→i)← λi(πt,j)
∗,

∀i weight(Vi)← λi(∅)
∗

3. Find the MDSF with weighted vertices for graph G

yielding a root vertex and set of edges Eai→bi

4. πroot = πroot(∅)
∗, ∀Eai→bi

∈EMDSF
πbi

= πbi
(ai)

∗

4 SCF Bayesian Model Averaging

Using Bayesian Model Averaging, queries are proba-
bilistically averaged over all possible models. For SCFs
we can rewrite Equation 3 in terms of inter-set and
intra-set parents. Equation 7 follows using the same
decomposition employed by Buntine (1991).

P (X̃|X) =
X

πt

X

πt−1

Y

i

eLS(X̃i|X̃πi
,Pθ|X)+log P (πi)

P (X̃|X) =
X

πt

Y

i

X

πt−1,i

eLS(X̃i|X̃πi
,Pθ|X)+log P (πi) (7)

We can now employ the Matrix Tree Theorem for di-
rected graphs to compute the numerator and denomi-
nator of Equation 7 in polynomial time.

Theorem 1 (Tutte (1948)) If we construct a ma-
trix A such that

aij =
{

∑

k wk,j if i = j

−wi,j if i 6= j

and if A−k is the matrix created by removing row k
and column k of A then:

det(A−k) =
∑

Tn

∏

(i,j):E(i→j)∈Tk

wi,j (8)

where Tn is each directed spanning tree rooted at k.

The efficient O(|V|3) computation obtained from The-
orem 1 can be generalized to forests with weighted
roots by augmenting the graph with a new root X0

and edges w0,j = rootweightj .

Equation 7 can then be efficiently calculated2 using

2In many structures the choice of direction for a sin-
gle edge is arbitrary. This can lead to an ill-conditioned
matrix. A heuristic (e.g., the edge direction in the MAP
estimate) can be employed to direct such edges.



the following weight settings.

wi,j =
X

πj:πj,t=Xi

e
LS(X̃j|X̃πj

,Pθ|X)+P (πj)
(9)

w0,j =
X

πj:πj,t=∅

e
LS(X̃j |X̃πj

,Pθ|X)+P (πj)
(10)

where |πj,t−1| ≤ k.

5 SCF Dynamic Bayesian Networks

Our selectively conditioned forest algorithms were in-
spired by Dynamic Bayesian Networks. The class of
graphs for the repeating slice of the DBN is a mixture
of inter-timestep dependencies connecting variables in
Xt−1 to variables in Xt and intra-timestep dependen-
cies connecting variables within Xt. This formulation
lends itself naturally to SCFs where Xt−1 is the con-
ditional set and Xt is the target set. SCFs allow an
intra-timestep forest structure and a limited number
of inter-timestep parents. An example from the class
of SCF DBNs is shown in Figure 3.

Figure 3: A partially unrolled SCF DBN with an intra-
timestep forest structure and inter-timestep parents
limited to two.

For a DBN with m variables in each timestep and
inter-timestep dependencies limited to k, the run-
ning times of MAP SCF and BMA SCF are both
O(mk+2|D|). The resulting structure (or average
over structures) optimizes P (Xt+1|Xt, G)P (G), mak-
ing SCFs well-suited for prediction.

5.1 Experiments

We compare average withheld predictive performance,
log P (Xt|Xt−1), of MAP SCF and BMA SCF with
MAP estimates of subclasses of SCF on two different
temporal datasets. The first (Office) has six variables
that are discretizations of sensor values measuring key-
board and mouse usage, sound levels, motion, and the
status of the office door at minute-level granularity.
There are approximately 80,000 timesteps of data. We

use the SCF algorithm and train over 99% of the data
and test on the remaining withheld data. The second
dataset is the Bayesian Automated Taxi (BAT) DBN
(Forbes et al. 1995), a synthetic DBN modeling vehi-
cle status that has 28 variables. We generate 500 and
1000 timesteps of training data and 1000 timesteps of
testing data. We train using BDeu with sample size
20 and a uniform structure prior.

Office(99%)
−4.5

−4

−3.5

−3

BAT 1000 BAT 500
−32

−30

−28

−26

−24

−22

−20

−18 No structure
MAP Intra
MAP Inter(1)
MAP Inter(2)
MAP Inter(3)
MAP SCF(1)
MAP SCF(2)
BMA SCF(1)
BMA SCF(2)
True Model

Figure 4: Average withheld log-probability of next
timestep data given current timestep data.

The results are shown in Figure 2. The No structure
model uses the marginal probabilities for each vari-
able. The Intra model learns a forest structure to con-
nect variables within the same timestep. The Inter(k)
model allows each variable at most k parents from the
previous timestep.

Of the structure MAP estimates, MAP SCF performs
the best of these classes, which we would expect since it
is learning a superclass of the other models’ structures.
Of perhaps more significance, in both datasets the
MAP SCF(1) model outperforms all other Inter mod-
els, suggesting the importance of intra-temporal de-
pendencies in DBNs. BMA SCF is equivalent to MAP
SCF in the Office dataset. However, for the smaller
BAT experiments where structure uncertainty is high,
BMA SCF outperforms MAP SCF significantly.

6 Selective Forest-Augmented Näıve

Bayes

We now show how SCFs can be applied to Bayesian
Network classification to create a generalization of the
TAN classifier that performs similarly on “clean” data
with only relevant features, while offering built-in fea-
ture selection for improved performance on data with
“noisy,” irrelevant features. The resulting classifiers,
selective tree-augmented Näıve Bayes (STAN) and se-
lective forest-augmented Näıve Bayes (SFAN), are not
new, but we provide the first method for BMA of
SFAN and the first method and evaluation of exact
MAP estimated SFAN and STAN.

Figure 5 illustrates the characteristic differences be-
tween Näıve Bayes and augmented Näıve Bayes mod-



Figure 5: Näıve Bayes classifiers with augmentation. (a) Näıve Bayes (b) tree-augmented NB (TAN) (c) forest-
augmented NB (FAN) (d) selective tree-augmented NB (STAN) (e) selective forest-augmented NB (SFAN).

els. Selectivity allows feature selection to be part of the
structure learning process of augmented Näıve Bayes
classifiers. MAP SFAN can be learned using the MAP
SCF algorithm with the class as the condition set,
St−1, and the features as the target set, St. MAP
STAN and Forest-Augmented Näıve Bayes (FAN) can
also be learned using simple modifications to the MAP
SCF algorithm that impose different structure restric-
tions.

Though SFAN is a generalization of the TAN clas-
sifier, increased generality in augmented Bayes clas-
sifiers can lead to decreased classification accuracy
(Friedman et al. 1997). This is because generative
models maximize the joint likelihood while the Bayes
optimal classifier maximizes conditional likelihood of
the class variable (Y) given the feature values (X).

P (X,Y|G) = P (Y|X, G) + P (X|G) (11)

MAP selective-augmented Bayes classifiers run the risk
of yielding a very small Markov blanket for the class
variable by maximizing the joint likelihood primarily
through the P (X|G) term. In other words, the fea-
tures explain away most of the other features without
the help of the class variable. Friedman et al. (1997)
require the class variable to be a parent of each feature
to deal with this problem, but this can degrade clas-
sification accuracy in the presence of noisy features.
While in our empirical results SFAN doesn’t underper-
form against FAN, as a way of dealing with this issue
we propose adjusting the graph structure prior to pre-
fer having the class variable as a parent for each feature
without requiring it. We can separate this modifica-
tion to the LocalScore function into a penalty term for
excluding the class variable.

G∗ = argmax
G

log

Z

Θ

P (G|D) dΘ

= argmax
G

log

Z

Θ

P (D|G, Θ)P (G, Θ) dΘ

= argmax
G

"

X

i∈St

LS(Xi|Xπi
, Pθ) + P (πi) + penalty(πi)

#

(12)

Using the delta function, δ(.), which is one when the
statement is true and zero otherwise, we can parame-
terize the penalty by α.

penalty(πi) = −αδ(St−1 /∈ πi) (13)

Setting α = ∞ yields the FAN classifier (Figure 5c),
while setting α = 0 yields the SFAN classifier (5e).
In sparse datasets where some features are indepen-
dent of the class variable and other features are useful
discriminatively, but only weakly so, we would expect
a value of α between these two extremes to produce
better results than either the FAN or SFAN classifier.

6.1 Experiments

We evaluate our classifiers using a number of UCI
datasets (Newman et al. 1998). We remove any exam-
ples with missing features. We perform 10-fold cross-
validation. We employ entropy-based discretization of
continuous variables (Fayyad and Irani 1993) for each
fold using only the training set labels. We use the
BDeu prior within the MAP SCF algorithm and use a
prior weight of 10.
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Figure 6: Classification accuracy Rates of Näıve Bayes
and augmented Näıve Bayes classifiers on UCI datasets

The results of our first experiment in Figure 6 show
the classification accuracy rates of the various Näıve
Bayes-based classifiers on eight different UCI datasets
and their average classification accuracy. We find a
significant difference in average classification accuracy
between the Näıve Bayes classifier and each of the
augmented classifiers, but insignificant differences be-
tween augmented classifiers.
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Figure 7: Classification accuracy rates on UCI
datasets with 5 noisy features added.
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Figure 8: Classification accuracy rates on UCI
datasets with 20 noisy features added.

The results of our second set of experiments in Figure 7
and Figure 8 show the robustness of the different clas-
sifiers to noisy features. Under the same settings as the
first experiment, we add 5 (Figure 7) and 20 (Figure 8)
uniform random binary noise features. NB, TAN, and
FAN all have significant accuracy degradations as the
amount of noisy features increases, while the STAN
and SFAN models effectively ignore the noisy features
(Figure 9). Other methods exist for performing fea-
ture selection (e.g. wrapper-based (Kohavi and John
1997)) that often increase the time complexity of the
algorithm and use heuristics, but MAP SCFs incor-
porate it into part of the structure learning process
for structure-augmented classifiers. This addition of
selectivity does not increase the run-time complexity
versus TAN (without feature selection), and employs
statistically justified Bayesian scoring metrics.

Our final experiment demonstrates a situation where
a selective classifier (SFAN) can underperform against
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Figure 9: Average classification accuracy rates on UCI
datasets versus number of noisy features added.

its non-selective counterpart (FAN), but by employing
the exclusion penalty (Equation 13) better classifica-
tion accuracy than either the original SFAN or FAN
classifier can be achieved. We construct a synthetic
dataset with 10 binary features that are weakly de-
pendent on the class variable (p(Fi = C) = .6), and
20 random binary features that are independent of the
class variable. We generate 100 examples to train an
SFAN classifier under varying exclusion penalty con-
stants and test on a set of separately generated 100
examples. We average over 100 experiments.
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Figure 10: The exclusion penalty versus classification
accuracy for learning features weakly correlated to the
class among additional noisy features

The results are shown in Figure 10. At the extremes
of the graph we have the unpenalized SFAN classifier
(α = 0) and the FAN classifier (α = 6). Both FAN
and SFAN underperform against the SFAN classifier
with exclusion penalty α ∈ [2, 4]. We believe some
real datasets will have similar “happy mediums” where
the discriminative benefit of including more potentially
relevant features is balanced against the detrimental
effect of including too many irrelevant features in the
class variable’s Markov blanket .

We’ve shown that the built-in feature selection of



SFAN provides equivalent classification accuracy to
FAN in relatively clean data and far greater robust-
ness to noisy, irrelevant features. Additionally, we’ve
described how the graph prior can be modified to bet-
ter balance the benefits of a large Markov blanket for
the class variable versus the detriments of including
many irrelevant features. We believe this evidence and
the similar run-time and implementation complexities
suggest SFAN should be preferred to the commonly
employed TAN classifier for Bayes Net classification.

7 Conclusions and Future Work

We have shown how two existing classes of structures
that allow efficient structure learning, tree structures
and limited fixed-orderings, can be combined while
still allowing efficient structure learning. We call this
combined class of structures selectively conditioned
forests. We have presented algorithms for efficiently
learning MAP estimates of SCFs and Bayesian Model
Averaging for the class of SCFs. Prior to this work,
SCFs could only be learned approximately.

We demonstrated the usefulness of this class of struc-
tures in two domains. Applied to Dynamic Bayesian
Networks, SCFs learn structures with both intra-
timestep and inter-timestep dependencies. We showed
empirically that this combination of dependencies im-
proves predictive model accuracy. We additionally
showed that Bayesian Model Averaging helps to fur-
ther improve predictive model accuracy for small train-
ing datasets. Applied to generative classification
models, SCFs yield Selective Forest-Augmented Näıve
Bayes classifiers. We showed empirically that these
classifiers perform as well as TAN on noise-free data,
and better than TAN on noisy data. We believe
that this noise robustness, along with the comparable
run-time costs and implementation complexity, make
SFAN a preferable classifier to TAN.

Our plans for the continuations of this work are two-
fold. First, we would like to apply SCFs to datasets
with missing values so that our learning algorithms
can be extended to e.g. Hidden Markov Models. Sec-
ond, we believe that further empirical analysis of the
SFAN classifier is warranted. Specifically, we would
like to empirically measure the benefits of the exclu-
sion penalty prior (Equation 13) and Bayesian model
averaging over SFANs for the important problem of
classification.
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A Dynamic Bayesian Network Results

Table 2: Average withheld log-probability of next
timestep data given current timestep data

Structure Office-99% BAT 1000 BAT 500
No structure -4.4173 -30.1367 -31.5235

MAP Intra -3.9879 -21.7195 -22.6262
MAP Inter(1) -3.3230 -27.3750 -27.6108
MAP Inter(2) -3.1679 -27.3662 -27.6095
MAP Inter(3) -3.1118 -27.2171 -27.4460
MAP SCF(1) -3.0164 -20.0866 -20.3967
MAP SCF(2) -2.9137 -19.8432 -20.1307
BMA SCF(1) -3.0164 -19.5476 -19.6845
BMA SCF(2) -2.9137 -19.2886 -19.4752

True Model ? -18.7386 -18.9482

B Bayesian Network Classifier Results

Table 3: Average cross-validated classification accu-
racy with no added noisy features

NB TAN SFAN
breast-cancer 0.975107 0.970695 0.970695

car 0.700242 0.876711 0.876133
cmc 0.495537 0.511840 0.509813
crx 0.856107 0.857622 0.866783

dermatology 0.969286 0.969286 0.974841
ecoli 0.737968 0.767914 0.788948
wine 0.972222 0.972222 0.966667
zoo 0.920000 0.930000 0.930000

Table 4: Average cross-validated classification accu-
racy with 5 added noisy features

NB TAN SFAN
breast-cancer 0.970695 0.926684 0.975085

car 0.700212 0.705478 0.874452
cmc 0.498911 0.502317 0.513877
crx 0.862075 0.863776 0.862145

dermatology 0.958175 0.949603 0.966429
ecoli 0.589305 0.714171 0.764795
wine 0.977778 0.883333 0.977778
zoo 0.890000 0.890000 0.910000

Table 5: Average cross-validated classification accu-
racy with 10 added noisy features

NB TAN SFAN
breast-cancer 0.954582 0.926748 0.973615

car 0.700218 0.550356 0.873837
cmc 0.498957 0.514580 0.516579
crx 0.840583 0.863660 0.859091

dermatology 0.911032 0.924444 0.971984
ecoli 0.493137 0.669162 0.771212
wine 0.960784 0.820588 0.955229
zoo 0.891818 0.920000 0.930909

Table 6: Average cross-validated classification accu-
racy with 15 added noisy features

NB TAN SFAN
breast-cancer 0.932566 0.926684 0.969203

car 0.700185 0.525965 0.871481
cmc 0.492145 0.501710 0.510494
crx 0.807203 0.863706 0.852937

dermatology 0.863016 0.927302 0.971905
ecoli 0.434314 0.660873 0.767736
wine 0.921242 0.792157 0.966013
zoo 0.900000 0.910000 0.940000

Table 7: Average cross-validated classification accu-
racy with 20 added noisy features

NB TAN SFAN
breast-cancer 0.900469 0.929753 0.975149

car 0.700252 0.513748 0.884259
cmc 0.487429 0.487447 0.493588
crx 0.776434 0.863846 0.859184

dermatology 0.812143 0.924683 0.955317
ecoli 0.424777 0.644920 0.758645
wine 0.860131 0.797386 0.966667
zoo 0.880000 0.910000 0.930000


